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ABSTRACT 

 

This study revisits the sectoral shifts hypothesis for the US for the period 1948 to 2011. A 

quantile regression approach is employed in order to investigate the asymmetric nature of 

the relationship between sectoral employment and unemployment. Significant 

asymmetries emerge. Lilien’s dispersion index is significant only for relatively high levels 

of unemployment and becomes insignificant for low levels suggesting that reallocation 

affects unemployment only when the latter is high. More job reallocation is associated 

with higher unemployment. 
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1. Introduction 

 

The relevance of intersectoral labor reallocation as a triggering force of aggregate (un) 

employment fluctuations is at the centre of an ongoing controversy. This debate persists 

because of the “observational equivalence” problem which is endemic in the sectoral shifts 

analysis (Lilien 1982b; Abraham and Katz, 1986). Both aggregate and allocative shocks can 

explain the observed positive correlation between unemployment and intersectoral 

employment dispersion signals. 

Discriminating between the impact of these two sources of shocks on 

unemployment has become one of the major challenges of empirical macroeconomics, and 

the massive effort aimed at overcoming this identification problem has led to important 

analytical extensions (e.g. job creation and job destruction analysis) and a vast and 

growing literature (for a survey c.f. Gallipoli and Pelloni, 2008).   

Originally the observational equivalence problem emerged in linear regression 

models which can only identify the conditional mean response of unemployment to 

changes in the covariates. The linear regression model (LRM) restricts the analysis to 

responses of the conditional mean and would be misleading as reallocation shocks are 

asymmetric and non-directional by nature. In the present paper, we adopt a new line of 

analysis which has novel features. We estimate a reduced form equation for 

unemployment of the Lilien (1982a) type and draw inferences by implementing a quantile 

regression (QR) approach to exploit the intrinsic asymmetries of allocative shocks. 

Quantile regression modelling allows us to quantify the response of each unemployment 

quantile to covariates. We can analyze not only the conditional central location but also the 

off-central location responses. In section 2 we put the sectoral shifts issue into the 

perspective of QR. In section 3 we introduce our QRM (Quantile Regression Model) for 

sectoral shifts and discuss briefly estimation and inference issues leaving details to an 

appendix. In section 4 we present results and finally in section 5 we draw conclusions and 

briefly outline possible developments. 
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2. Quantile Regression and Employment Reallocation 

 

Lilien (1982a) claims that intersectoral shifts in demand composition could operate as the 

driving force of unemployment fluctuations. Idiosyncratic shocks can bring about a process of 

workers reallocation (from declining to expanding sectors) which could be slow enough to require 

prolonged unemployment spells. Periods of relatively higher aggregate unemployment would be 

then associated with periods of relatively higher dispersion in employment demand.   

Lilien’s outcomes emerged from the estimation of a dynamic reduced form equation for the 

U.S. unemployment rate of the general form: 

 

[ ]( ) , ( ) , ( )t t t tu F A L u B L z C L σ=     (1) 

where ut is the unemployment  rate, zt is a vector of aggregate demand variables and A(L), B(L) 

and C(L) are polynomials in the lag operator L. The covariate σt, often called the Lilien dispersion 

proxy, is the weighted standard deviation of cross-sectoral employment growth rates: 
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where Njt  is employment in sector j at time t for j= 1,2…, K, Nt  is aggregate employment at time t, 

and ( Njt /Nt ) are weights defined by the relative size of each sector.  

Lilien's empirical evidence suggests that σt is significantly and positively correlated with ut  

over the period 1948-1980 and that much of US unemployment in the 1970's, contrary to that of the 

early 1960's, can be explained by sectoral shifts. Figure 1 shows that over time in the US, there has 

been a large amount of workers reallocation, as characterized by σt, and that peaks in σt  often 

coincide with peaks in unemployment.. 

 

Figure 1 Here 

 

Earlier analysis of these phenomena (Lilien 1982b; Abraham and Katz 1986, 1987; Weiss 

1986) showed that the positive unemployment-sectoral dispersion (u-σ) correlation (as measured 

by using Lilien’s proxy) could instead capture the effects of aggregate shocks if cyclical 

responsiveness varies across sectors. Thus two alternative theories of unemployment fluctuations 

could yield observationally equivalent predictions. Subsequent research has been moving in 
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disparate directions and has seen a flourishing of empirical studies but at the same time no 

unifying analytical framework has obtained a widespread consensus1.  

Explorations of the (u-σ) correlation have in most cases borne out Abraham and Katz’s 

(1986) skeptical views about sectoral shifts2. These results, rooted in the LRM, reflect the response 

of the conditional mean function to a change in the covariates. They ignore the asymmetric and 

non-directional nature of allocative shocks. Aggregate shocks are directional (positive/negative), 

and, through the relevant propagation mechanism, could bring about large unemployment 

oscillations even when they are small.  In principle these effects are reflected in each quantile of the 

unemployment distribution and would imply essentially a central location change. Reallocation 

shocks are disturbances unfavourable to the existing allocation of resources: a sectoral shock should 

bring about a reallocation process which is followed by an oscillation in aggregate unemployment. 

Some sectors will be affected positively and others negatively. At the macro level, this change in 

demand composition is reflected in the ensuing reallocation of workers which, for given search 

technology, would bring about an increase in unemployment consistent with the size of the 

required job reallocation. It is the magnitude of the engendered reallocations which determines the 

aggregate response in terms of higher unemployment. As reallocation shocks affect 

unemployment to the extent they are unfavorable to the current allocation of resources, small 

shocks generate a small unemployment increase while large shocks generate a large rise in 

unemployment. In analytical terms, it is the size of the shock and its asymmetric structure that 

count. Thus, the conditional unemployment distribution would be skewed to the left and the 

effects of employment reallocations on the lower quantiles will be small and insignificant. 

Asymmetry and/or the non-directional nature of idiosyncratic shocks have received a 

relatively small and restricted attention in testing the “job reallocation hypothesis” (e.g. Davis and 

Haltiwanger, 1999; Pelloni and Polasek, 1999; Pelloni and Polasek, 2003; Panagiotidis et al 2003 and 

for nonlinearity Panagiotidis and Pelloni, 2007). In the context of Lilien-type approach, equations 

(1) and (2) above, asymmetry has played no role and most of the focus has been on the mean 

response and / or the volatility3. In this paper, we take a different view and suggest that modelling 

the conditional mean of unemployment is not an appropriate strategy as it fails to take into 

account the fundamental intrinsic asymmetries of allocative shocks. If the conditional distribution 

of unemployment is skewed to the left, the mean will be smaller than the median and would be 

representative of lower tail behavior.  Even as a measure of central location the conditional mean 

would be potentially distorting. Furthermore, given the intrinsic skewness of the conditional 

unemployment distribution under the employment reallocation assumption, researchers would be 

interested in measuring and testing off-central location responses and changes in the shape of the 

conditional unemployment distribution in response to changes in the covariates. Clearly, the LRM 
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would not be able to provide the necessary information. Preceding analyses were all based on the 

LRM and so all of them suffered of the shortcomings just illustrated.  

In summary in this paper we argue that two main characteristics characterize 

unemployment fluctuations brought about by allocative shocks: 

- The size of the shock; 

- The asymmetric response of unemployment. 

 The first of these traits could be handled within the LRM through a polynomial 

representation of the dispersion proxy which would capture the non-linearity of the allocative 

shocks4. However such a framework would capture only the shock size effect on the conditional 

mean. The second feature could hardly be captured within a LRM. We suggest handling the 

analysis of equations like (1) and (2) by using quantile regression. In fact the QRM would provide 

an approach capable of overcoming some of these shortcomings. It would identify variations in the 

conditional quantile in response to changes in the covariates and gives us the possibility to focus 

on different segments of the distribution5. Our approach is not embedded within a tight theoretical 

framework. However, no fully developed theoretical model of sectoral shifts has been developed 

up to now. Thus our line of attack, like others in the past, is based on fundamental features of 

sectoral shifts. Though it may not provide a final assessment on sectoral shifts (this would have to 

wait for the missing theory), we maintain that it can provide important and useful clues and leads.  

 

3. A Benchmark QRM of Unemployment.  

 

We estimate linear versions of equation (1), which provide representations of how each 

conditional quantile of unemployment depends on a (purged) Lilien’s dispersion measure and a 

vector of aggregate covariates.  

We start by providing a brief overview of the econometric methodology adopted here. Let 

U represent a random variable, in our case the unemployment rate, the conditional quantile 

function (CQF) at quantile τ given a vector of regressors, Xi: can be defined as 

     

1( ) ( )i U ii
Q u X F Xτ τ−=  

where )( iU XF τ  is the distribution function for ui at u, conditional on Xi. When τ=0.5, ( )i i
Q u Xτ  

would give us the conditional median, while τ=0.9 provides the upper decile of u given Xi. The 

following minimisation problem is solved by the CQF: 

 

[ ]( ) arg min ( ( ))i i i ii
Q u X E u q Xτρ= −  
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where ))0(1()( ≤−= ww τρτ   is the absolute value check function. When τ=0.5, we have the least 

absolute deviations (LAD) estimator, so that when ( )i i i
Q u X   is the conditional median. The 

check function puts negative and positive weights in an asymmetric way: 

wwwww )1)(0()0(1)( ττρτ −≤+>=  

Within the quantile regression framework, we set: 

[ ]arg min ( ' )iE u X bτ τβ ρ≡ −  

and τ̂β is the quantile regression estimator. This minimisation can be considered as a linear 

programming problem. 

 We would like to keep our experiment as close as possible to Lilien (1982a).  However, we 

cannot ignore lessons which have been emerging since the publication of Lilien’s article. Thus our 

specification of the unemployment equation is somehow closer to the specification in Mills et al 

(1995). 

 As dependent variable, following Wallis (1987), we employ the logistic transformation of 

unemployment rate. Although the discussion on the stationarity properties of the unemployment 

rate is extensive, we treat it here as a mean reverting process. We have employed a number of unit 

root tests such as the ADF, Phillips-Perron, the Zivot-Andrews (1992) with a break and the 

nonlinear one proposed by Kapetanios et al (2003). All of them reject the unit root either at the 5% 

or at the 1% significance level (results available upon request). The summary statistics of the 

unemployment and its logistic transformation are presented in Table 1. It emerges that the mean is 

greater than the median and there is some positive skewness. Figure 2 presents the kernel density 

together with the histogram for the two series. It is worth mentioning that the right tail of the 

distribution of the unemployment seems longer than its left tail and the one of its logistic 

transformation. We interpret it as a potential signal of asymmetry. 

 

Table 1 Here 

Figure 2 Here 

 

The unemployment rate is modelled as a linear function of money growth (m), the 

dispersion index (s), the natural logarithm of the US public deficit  (d ), the growth rate of energy 

prices (e ) and so for the τth quantile vector x = ( s, m, d, e) 

 Our covariate, s, is Lilien’s dispersion measure purged of aggregate effects (Lilien’s sigma 

was constructed using data from the Bureau of Labor Statistics using four sectors: Construction, 
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Finance, Manufacturing and Trade). Because of potential aggregate influences on the weighted 

cross-sectoral variance of employment growth rates, we have purged the Lilien’s proxy in (2) by 

regressing it on the current value of the aggregate variables appearing on the right hand side of (1).  

As the state of the art dictated in 1982, Lilien’s monetary policy covariate was a measure of 

unanticipated monetary growth. Since in the interim period empirical evidence has not borne out 

the importance of unperceived money changes as a potential triggering force of cycles, we can cast 

aside the separation between perceived and unperceived money growth. In our model we use the 

growth rate of M2 as a measure of monetary policy. 

The natural logarithm of the US public deficit is introduced to capture the effects of fiscal 

policy while the growth rate of energy prices, e, enters as another potential source of aggregate real 

shocks  The inclusion of energy prices as an aggregate source of fluctuations might be  

controversial. Early important work on energy costs, Loungani (1986), Hamilton (1988), Keane 

(1991), Keane (1993) and Keane and Prasad (1996) suggest that relative productivity changes 

associated with oil price changes could lead to significant variations in frictional unemployment as 

labour is reallocated across sectors. We prefer to interpret oil price changes as aggregate shocks, 

because we wish to present a lower bound estimation for the hypothesis of sectoral shifts (c.f. Mills 

et al., 1995). 

The gist of our experiment is linked to the different nature of allocative and aggregate 

shocks. Allocative shocks being compositional and not directional induce only movements of the 

unemployment rate above its long run steady state value (LRSSV). For instance, if the LRSSV is 5% 

when an allocative shock hits the economy, unemployment will increase temporarily above its  5% 

LRSSV,  to converge back to it  in due course when reallocations have been completed. This 

characteristic entails that a Lilien’s proxy, if properly designed to capture sectoral shocks, would 

only affect significantly values of the unemployment rate above the LRSSV of unemployment. 

Furthermore the compositional nature of allocative shocks implies that only size matters. 

Directional shock could affect the economy even when they are small through the magnifying 

effect of a propagation mechanism while allocative shock effects depend on the size of change in 

demand composition.  Thus we postulate that the effect of our Lilien proxy will be non-significant 

for the lower quantiles of a skewed conditional distribution of the unemployment rate. On the 

other end, aggregate shock, though necessarily symmetric, must capture variations above and 

below the unemployment LRSSV and would moderately affect the shape of the distribution and 

would tend to look like central location shifts (conditional means effects). Our experiment claims 

that a unit change of one of the aggregate covariates should cause every quantile to change 

(approximately) by the same amount because aggregate shocks would represent a central-location 

shift. Aggregate shocks might bring about scale shifts but not changes in the shape of the 
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unemployment distribution. This property should strictly hold for nominal shocks, while the 

aggregate real shocks may present minor variations across quantiles because of associated 

distributional effects. Sectoral reallocations, operating through a one sided dimensional effect 

(unfavorable to the current allocation of resources) linked to the magnitude of the shock, entail a left 

skewed unemployment distribution. An increase of the dispersion proxy from a lower to a higher 

value has a greater effect on high unemployment rates and would affect the shape of the 

unemployment distribution by increasing its left-skewness.  

 

4. Empirical Results 

 

We start our analysis with the linear benchmark model. Our experiment is carried out for 

the United States using monthly data for the period 1958:01-2011:03 (Data were retrieved from the 

Bureau of Labor Statistics). We have employed 10 quantiles to reveal the behavior of the entire 

distribution. 

Given the complexities and unsolved intricacies of a dynamic analysis (identification of lags 

structure) in the QR context 6, we suggest a simple but still informative procedure. We apply this 

procedure to both the LRM and the QRM.  We run three regressions and each of these regressions 

would relate the unemployment rate measured at time t to a specific lag (t-j) of the set of the 

covariates. The first regression would capture the effect on Ut of the contemporaneous set of 

covariates (j = 0).  The other two independent regressions should catch the impact on Ut of the set 

of regressors lagged six months (j=6) and twelve months (j=12). In such a way, without entering 

the not yet fully explored territory of QR dynamics, we can draw useful comparative inferences 

about the potential role of the covariates within a one year horizon.   

The OLS results are presented in Table 2. The statistical significance of σt emerges for model 

1 (contemporaneous relationship), for model 2 with 6 lags and model 3 with 12 lags. The 

coefficient of the federal deficit is also statistically significant but its significance decreases as we 

move from model 1 (contemporaneous) to model 3 (12 months lags). The money growth coefficient 

is insignificant for model 1 but becomes significant in the case of model 2 and 3. Energy price 

inflation also becomes significant in the case of model 3. However, strong evidence of 

autocorrelation emerges (see Table 2).  

 

Table 2 Here 
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The next step would be to re-examine the linear relation by relaxing the assumption of 

symmetry. The QRM results are presented in Table 3 (tests for asymmetries are also available upon 

request, see Tables 7 and 8). 

 

Table 3 Here 

 

 In a standard fashion we have obtained estimates of the CQF via the solution of the linear 

programming minimization problem min ∑[ρτ (ui  ─ q(Xi, β)], where ρτ  is the absolute value check 

function. A crucial estimation and inference issue concerns the estimates of the asymptotic 

covariance matrix. In this study we apply bootstrapping techniques for the estimation of the 

covariance matrix. We use XY-pair (design) out of the various potential bootstrapping methods. 

The latter is valid in cases where U and X are not independent. The methodology works as 

follows: after generating B randomly drawn subsamples of size m from the original data, we 

compute estimates of β(τ) using (U*, X*)  replacements for each subsample. The estimated 

asymptotic covariance matrix is then derived from the sample variance of the bootstrap results (for 

a detail discussion (see Kocherginsky et al., 2005). In this case we have used 100 repetitions.  

Table 4 shows goodness of fit statistics and diagnostic tests which bear out that the 

equation is sufficiently general to be viewed as an adequate benchmark model. 

In Figures 3, 4 and 5 we present the results for the simultaneous effects, the six and twelve 

months horizons respectively. In all three graphs the slopes of the estimated curve for the fitted 

constant could look flatter below the median than above the median. However, the coefficient 

values are negative thus suggesting a left skewed distribution.  

 

Figures 3, 4 and 5 Here 

 

The contemporaneous sectoral shift variable displays a moderately positively sloped graph 

which is insignificant only at the first three quantiles. The positive slope indicates an increase in 

the scale of the response of the conditional distribution. A unit increase in the dispersion index has 

a greater effect on unemployment for higher quantiles than for lower quantiles other things equal. 

In other words, the higher the unemployment, the higher is the effect of reallocation. 

When we introduce lags, we can see that the sectoral shifts scale effect increases after six 

months and becomes flatter with twelve months horizon. Thus as the time horizon becomes 

longer, the scale effect associated with the dispersion proxy first increases, then falls leaving only a 

location effect. This may seem to suggest that the effect on unemployment of employment 
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dispersion after a one year horizon does not reflect the expected stylized characteristic of an 

allocative shock. 

In figure 3 federal deficit has a significant impact on unemployment. The graph somehow 

resembles a straight line between the 30th quantile and the 60th quantile (i.e. suggesting a location 

effect) while presenting a positive slope for lower quantiles and a negative slope for higher 

quantiles. Since the associated coefficients are negative, this concave shape of the plot may indicate 

deficits would affect unemployment negatively at higher quantiles and positively at lower 

quantiles. The Federal deficit is positively sloped with associated negative coefficients both at the 

six and twelve months horizons. The effect of an extra unit of deficit is significant, positive and 

increasing for all unemployment quantiles.  

The contemporaneous money covariate is insignificant for all values of τ, while it is significant 

for 0.4≤ τ ≥0.7 and for 0.6≤ τ at six-month and twelve-month horizons respectively. Both significant 

portions of the curves are horizontal reflecting location shifts. Overall money has little impact on 

unemployment within a one year horizon.  

The energy price variable is insignificant whatever the considered time horizon. This outcome 

may reflect the ambiguous nature of oil shocks which may have strong re-distributional effects 

captured by the s-proxy. 

Given the autocorrelation issue, we have also added a lagged value of the logistic 

transformation of unemployment. These are models 4 and 5 (presented in Tables 5 and 6 and in 

Figures 6 and 7). Two important conclusions emerge. On the one hand autocorrelation is corrected 

in this case (see Table 9). On the other hand upward sloping coefficient of sigma remains, 

providing further support for our results.  

 

Tables 5 and 6 here 

 

Figures 6 and 7 here 



 11

 

5 Conclusions and further outlook 

 

We revisit the sectoral shifts hypothesis 30 years after the seminal paper of Lilien (1982a). 

Employing data from the period 1948 to 2011, we examine the case of asymmetry within a quantile 

regression framework. A purged version of Lilien’s dispersion proxy was used as a measure of 

turbulence in the labour market. Significant asymmetries consistent with the sectoral shifts 

hypothesis are revealed. This is found to be significant only when unemployment takes relative 

high values (relative to its median) whereas becomes insignificant when unemployment is low. 

That is, as predicted by the sectoral shifts hypothesis, the effects of labour reallocation are 

significant at higher level of unemployment. 
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Notes 

 

1) See Gallipoli and Pelloni (2008) for references and details of the different approaches to the 

macroeconomic impact of employment reallocation. 

2) A notable exception is Mills et al. (1995). This article, to the best of our knowledge, uses the 

most updated time series methodology applied to this specific framework (i.e. a reduced 

form equation with a Lilien dispersion proxy) . 

3) An exception is Byun and Hwang (2009). They emphasize that the skewness of the 

distribution of reallocation shocks can have a significant role in a Lilien-type model. Their 

empirical results show a significant effect of the skewness measure on the aggregate 

unemployment rate. However, they set their analysis in a LRM context and unfortunately 

fail to take into account recent advances in time series analysis. 

4) The second order polynomial in Davis (1986) and Loungani (1986) could fall in this line of 

reasoning. 

5) Koenker and Bassett (1978) proposed the QRM that provides estimates of the linear 

relationship between the covariates and a specified quantile of the dependent variable.  For 

a detailed analysis of quantile regression see Koenker (2005). For a more  concise and less 

technical exposition see Koenker and Hallock (2001);   

6) Koenker (2005) inserts quantile autoregression in the “twilight zone of quantile regression”. 
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Figure 1: Unemployment rate and Lilien’s σt  for the USA 
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Figure 2: Kernel Density for Unemployment and its Logistic Transformation 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Table 1: Summary Statistics 

 
Unemployment 

Rate 
Logistic Transformation 
of Unemployment rate 

 Mean  0.057312 -2.839907 
 Median  0.056000 -2.824774 
 Maximum  0.108000 -2.111335 
 Minimum  0.025000 -3.663562 
 Std. Dev.  0.016304  0.300950 
 Skewness  0.666020 -0.048311 
 Kurtosis  3.297517  2.838616 

 

 
 

Table 2: OLS Estimates of the model (t-stats below each coef) 

 
Model 1 

Contamporaneous 
Model 2:  

6 lags 
Model 3:  
12 lags 

    
C -2.9907 -2.9703 -2.9436 
 -126.98 -108.74 -94.13 
SIGMA_PURGED 13.0201 14.9764 11.9904 
 2.48 2.133 1.817 
FEDERALDEFICIT -8.8452 -7.8625 -6.5078 
 -14.17 -13.03 -8.605 
DL_AMBSL 0.2692 1.6661 2.5287 
 0.925 3.87 3.622 
DLCPI_ENERGY -0.3362 0.0003 1.0646 
 -1.02 0.0007 1.451 
    
    
Adjusted R^2 0.555 0.447 0.306 
F-stat 202.271 130.841 71.246 
Pr(F-stat) 0.000 0.000 0.000 
Serial Correlation 
LM Test Pr(12 lags) 0.000 0.000 0.000 
    
HAC  standard errors & covariance (Bartlett kernel, 
Newey-West fixed bandwidth 7) 
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Table 3: Quantile Process Estimates 
Specification: LOGISUNRATE C SIGMA_PURGED2 FEDERALDEFICIT  DLAMBSL DLCPI_ENERGY 
  Model 1 Contamporaneous Model 2: 6 lags Model 3: 12 lags 
 Quantile  Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic 
C 0.1 -3.23 -137.42 -3.24 -178.27 -3.26 -262.38 
 0.2 -3.13 -165.27 -3.13 -191.74 -3.13 -229.83 
 0.3 -3.05 -215.23 -3.06 -274.23 -3.08 -302.68 
 0.4 -3.00 -344.63 -3.02 -318.36 -3.02 -223.53 
 0.5 -2.97 -400.81 -2.99 -235.62 -2.97 -229.21 
 0.6 -2.95 -359.39 -2.94 -148.04 -2.92 -200.57 
 0.7 -2.92 -288.12 -2.88 -140.53 -2.84 -153.12 
 0.8 -2.88 -158.32 -2.80 -115.26 -2.75 -153.30 
 0.9 -2.77 -89.62 -2.68 -148.70 -2.61 -100.60 
SIGMA_PURGED 0.1 -15.81 -1.68 -0.52 -0.06 3.16 0.31 
 0.2 11.00 1.51 1.55 0.32 7.70 1.71 
 0.3 8.65 1.61 7.26 1.55 10.94 1.75 
 0.4 12.09 3.61 8.32 2.21 16.76 2.91 
 0.5 14.23 5.01 13.77 2.99 17.68 3.54 
 0.6 17.09 3.09 14.67 2.51 14.87 2.91 
 0.7 24.03 4.72 23.66 3.06 16.75 2.55 
 0.8 27.74 4.68 31.48 3.85 15.36 2.16 
 0.9 37.37 3.27 49.46 4.57 22.11 2.02 
FEDERAL DEFICIT 0.1 -9.54 -20.17 -10.13 -35.95 -9.92 -16.62 
 0.2 -8.88 -19.64 -8.62 -20.21 -8.01 -17.92 
 0.3 -8.55 -27.39 -8.32 -39.79 -8.07 -23.95 
 0.4 -8.57 -42.34 -8.20 -30.82 -7.68 -27.52 
 0.5 -8.48 -48.96 -8.26 -23.23 -7.11 -21.20 
 0.6 -8.52 -49.13 -7.78 -18.43 -6.43 -17.45 
 0.7 -8.88 -27.06 -7.35 -17.84 -5.66 -13.04 
 0.8 -9.34 -16.82 -6.76 -14.48 -5.07 -12.26 
 0.9 -10.08 -10.07 -6.60 -9.78 -4.23 -6.42 
DL_AMBSL 0.1 0.82 1.14 0.13 0.20 0.46 0.48 
 0.2 0.70 1.16 0.81 1.10 1.46 2.06 
 0.3 0.25 0.65 0.54 0.74 0.64 0.76 
 0.4 0.12 0.31 1.72 2.20 0.72 0.76 
 0.5 0.03 0.06 1.74 2.33 1.25 1.24 
 0.6 -0.13 -0.23 1.81 3.23 2.99 2.92 
 0.7 -0.12 -0.15 1.43 2.26 2.81 2.69 
 0.8 -0.77 -0.71 1.00 1.16 2.76 2.66 
 0.9 -2.27 -1.72 0.38 0.46 2.98 3.39 
DLCPI_ENERGY 0.1 0.25 0.76 0.00 0.01 0.00 0.01 
 0.2 -0.21 -0.58 -0.15 -0.23 0.06 0.17 
 0.3 -0.68 -2.57 -0.26 -0.41 0.02 0.05 
 0.4 -0.40 -1.17 -0.22 -0.47 0.56 1.02 
 0.5 -0.38 -1.16 -0.04 -0.10 1.05 1.44 
 0.6 -0.47 -1.37 0.22 0.63 1.36 1.75 
 0.7 -0.29 -0.65 -0.02 -0.03 1.36 1.50 
 0.8 -0.77 -1.13 -0.48 -0.56 1.68 1.71 
 0.9 -2.05 -1.98 -0.51 -0.75 2.53 3.14 

 
Table 4: Goodness of fit for Quantile Regressions 

 Model 1 Model 2 Model 3 
Pseudo R-squared 0.386 0.305 0.202 

Adjusted R-squared 0.382 0.301 0.197 
Quasi-LR statistic 665.011 428.219 237.933 

Prob(Quasi-LR stat) 0.000 0.000 0.000 

Note: Pseudo R-squared are from Koenker and Machado (1999). 
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Table 5: Quantile Process Estimates 
  Model 4 Contamporaneous Model 5: 6 lags 
 Quantile  Coefficient t-Statistic Coefficient t-Statistic 
C 0.1 -0.069 -1.552 -0.064 -1.562 
 0.2 -0.078 -2.216 -0.026 -0.694 
 0.3 -0.009 -0.207 0.015 0.456 
 0.4 -0.056 -1.748 -0.019 -0.754 
 0.5 0.000 0.000 0.000 0.044 
 0.6 0.002 0.097 0.019 0.738 
 0.7 -0.023 -0.557 0.053 1.274 
 0.8 -0.028 -0.756 0.077 2.117 
 0.9 0.006 0.157 0.080 2.567 
SIGMA_PURGED 0.1 -2.106 -1.622 -1.128 -0.775 
 0.2 -1.330 -0.845 -0.962 -0.848 
 0.3 -0.018 -0.014 -0.472 -0.694 
 0.4 1.118 1.112 -1.395 -1.777 
 0.5 0.000 0.000 -0.129 -0.201 
 0.6 1.354 1.197 -0.013 -0.014 
 0.7 0.372 0.208 -0.439 -0.684 
 0.8 5.341 2.295 -0.677 -0.506 
 0.9 7.756 5.808 2.345 1.119 
FEDERAL DEFICIT 0.1 -0.165 -0.896 -0.034 -0.221 
 0.2 -0.203 -1.456 0.022 0.190 
 0.3 -0.078 -0.571 0.077 0.725 
 0.4 -0.093 -0.715 0.079 0.920 
 0.5 0.000 0.000 0.023 0.368 
 0.6 -0.003 -0.039 0.165 1.233 
 0.7 0.010 0.090 0.360 2.574 
 0.8 -0.067 -0.589 0.444 3.183 
 0.9 0.105 0.701 0.580 4.219 
DL_AMBSL 0.1 0.361 1.695 0.474 4.621 
 0.2 0.293 1.652 0.361 4.671 
 0.3 0.231 1.394 0.279 3.637 
 0.4 0.286 1.716 0.268 2.952 
 0.5 0.000 0.000 0.114 1.145 
 0.6 0.126 1.086 0.233 2.323 
 0.7 0.061 0.545 0.209 2.215 
 0.8 0.140 1.380 0.158 1.662 
 0.9 0.016 0.161 0.197 2.106 
DLCPI_ENERGY 0.1 0.113 1.196 0.113 1.131 
 0.2 0.082 0.866 0.065 0.840 
 0.3 0.049 0.496 0.014 0.236 
 0.4 0.158 1.743 0.044 0.589 
 0.5 0.000 0.000 0.007 0.114 
 0.6 0.013 0.169 0.120 1.085 
 0.7 -0.001 -0.007 0.135 1.436 
 0.8 -0.036 -0.411 0.050 0.551 
 0.9 -0.051 -0.676 0.157 1.502 
LOGIS UNRATE(-1) 0.1 0.992 66.650 0.992 70.647 
 0.2 0.983 86.602 1.000 82.590 
 0.3 1.004 65.066 1.012 90.271 
 0.4 0.984 106.718 0.995 110.891 
 0.5 1.000 584.689 1.000 561.182 
 0.6 1.000 117.149 1.005 130.977 
 0.7 0.985 69.708 1.011 71.433 
 0.8 0.981 77.853 1.016 84.621 
 0.9 0.984 79.838 1.009 96.409 
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Table 6: Goodness of fit for Quantile Regressions 

 Model 4 Model 5 
Pseudo R-squared 0.881451  0.88268 

Adjusted R-squared 0.880526  0.88176 
Quasi-LR statistic 5899.5 5984.5 

Prob(Quasi-LR stat) 0.000 0.000 

 



 25

 

Table 7: Quantile Slope Equality Test 
  Model 1 Model 2 Model 3 
     

Wald Test     
Chi-Sq. Statistic  106.794 144.548 152.824 

Prob.   0.000 0.000 0.000 
     

  prob value prob value 
prob 
value 

0.1, 0.2 SIGMA_PURGED 0.0006 0.780 0.612 
 FEDERAL DEFICIT 0.0785 0.000 0.001 
 DL_AMBSL 0.8632 0.322 0.214 
 DLCPI_ENERGY 0.1869 0.768 0.857 

0.2, 0.3 SIGMA_PURGED 0.6102 0.145 0.511 
 FEDERAL DEFICIT 0.2998 0.347 0.849 
 DL_AMBSL 0.3113 0.604 0.116 
 DLCPI_ENERGY 0.1133 0.7958 0.8873 

0.3, 0.4 SIGMA_PURGED 0.3666 0.7454 0.1671 
 FEDERAL DEFICIT 0.9191 0.6357 0.1641 
 DL AMBSL 0.6404 0.0234 0.8857 
 DLCPI_ENERGY 0.3374 0.9132 0.1022 

0.4, 0.5 SIGMA_PURGED 0.4574 0.0667 0.8 
 FEDERAL DEFICIT 0.5046 0.8069 0.0162 
 DL_AMBSL 0.7547 0.954 0.3847 
 DLCPI_ENERGY 0.9595 0.4762 0.2244 

0.5, 0.6 SIGMA_PURGED 0.4689 0.8401 0.3463 
 FEDERAL DEFICIT 0.792 0.0829 0.0095 
 DL_AMBSL 0.6585 0.9039 0.0156 
 DLCPI_ENERGY 0.6636 0.2927 0.4627 

0.6, 0.7 SIGMA_PURGED 0.0937 0.0967 0.6739 
 FEDERAL DEFICIT 0.1784 0.0973 0.0128 
 DL_AMBSL 0.9951 0.3633 0.7317 
 DLCPI_ENERGY 0.5211 0.5263 0.9895 

0.7, 0.8 SIGMA_PURGED 0.4654 0.2315 0.8268 
 FEDERAL DEFICIT 0.2559 0.0784 0.0642 
 DL_AMBSL 0.4249 0.5414 0.948 
 DLCPI_ENERGY 0.2929 0.389 0.5858 

0.8, 0.9 SIGMA_PURGED 0.3316 0.0465 0.4669 
 FEDERAL DEFICIT 0.3404 0.8027 0.1692 
 DL_AMBSL 0.142 0.4359 0.7667 
 DLCPI_ENERGY 0.127 0.9731 0.2727 
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Table 8: Symmetric Quantiles Test 
  Model 1 Model 2 Model 3 
     

Wald Test     
Chi-Sq. Statistic  21.43949 21.7492 23.0275 

Prob.   0.3717 0.3543 0.2874 
     

Wald Test     
Quantiles Variable    

     
0.1, 0.9 C 0.1515 0.0695 0.0267 

 SIGMA_PURGED 0.6197 0.1372 0.5052 
 FEDERALDEFICIT 0.0071 0.7968 0.9458 
 DL_AMBSL 0.3213 0.031 0.5825 
 DLCPI_ENERGY 0.3413 0.619 0.7302 

0.2, 0.8 C 0.0143 0.0272 0.018 
 SIGMA_PURGED 0.216 0.5576 0.2637 
 FEDERAL DEFICIT 0.0486 0.1182 0.098 
 DL_AMBSL 0.9123 0.1915 0.2969 
 DLCPI_ENERGY 0.7424 0.5118 0.7638 

0.3, 0.7 C 0.2163 0.0454 0.3934 
 SIGMA_PURGED 0.5199 0.6817 0.3365 
 FEDERAL DEFICIT 0.2348 0.1179 0.3569 
 DL_AMBSL 0.9082 0.2034 0.4756 
 DLCPI_ENERGY 0.666 0.7775 0.4165 

0.4, 0.6 C 0.8057 0.1476 0.9294 
 SIGMA_PURGED 0.8862 0.4429 0.3958 

 FEDERAL DEFICIT 0.5538 0.1353 0.7476 
 DL_AMBSL 0.8999 0.956 0.2168 
 DLCPI_ENERGY 0.767 0.8186 0.772 
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Table 9: Correlogram for the residuals of Models 4 and 5 
 

 Model 4 Model 5 
 AC   PAC  Q-Stat  Prob AC   PAC  Q-Stat  Prob 
         

1 0.100 0.100 6.488 0.011 0.089 0.089 5.149 0.023 
2 0.266 0.258 52.418 0.000 0.280 0.274 55.957 0.000 
3 0.184 0.149 74.392 0.000 0.188 0.159 79.009 0.000 
4 0.194 0.118 98.993 0.000 0.194 0.114 103.380 0.000 
5 0.185 0.102 121.340 0.000 0.162 0.072 120.530 0.000 
6 0.112 0.008 129.490 0.000 0.104 -0.003 127.600 0.000 
7 0.084 -0.031 134.070 0.000 0.077 -0.031 131.470 0.000 
8 0.088 0.000 139.190 0.000 0.088 0.009 136.540 0.000 
9 0.065 -0.003 142.000 0.000 0.063 0.007 139.140 0.000 

10 -0.038 -0.109 142.930 0.000 -0.049 -0.114 140.730 0.000 
11 0.059 0.020 145.200 0.000 0.065 0.028 143.480 0.000 
12 -0.130 -0.145 156.460 0.000 -0.127 -0.133 154.110 0.000 
13 0.006 -0.005 156.490 0.000 0.019 0.009 154.360 0.000 
14 -0.091 -0.041 162.010 0.000 -0.083 -0.028 158.910 0.000 
15 0.024 0.081 162.380 0.000 0.022 0.070 159.240 0.000 
16 -0.023 0.046 162.730 0.000 -0.023 0.036 159.590 0.000 
17 -0.051 -0.013 164.460 0.000 -0.044 -0.022 160.860 0.000 
18 -0.028 -0.001 164.980 0.000 -0.027 -0.009 161.330 0.000 
19 0.018 0.053 165.210 0.000 0.020 0.046 161.590 0.000 
20 -0.025 -0.015 165.640 0.000 -0.036 -0.025 162.470 0.000 
21 -0.030 -0.026 166.240 0.000 -0.036 -0.031 163.340 0.000 
22 -0.037 -0.054 167.160 0.000 -0.037 -0.051 164.260 0.000 
23 -0.017 -0.003 167.350 0.000 -0.016 0.010 164.430 0.000 
24 -0.129 -0.175 178.500 0.000 -0.133 -0.165 176.280 0.000 
25 -0.074 -0.052 182.180 0.000 -0.090 -0.062 181.670 0.000 
26 -0.041 0.008 183.330 0.000 -0.051 0.010 183.390 0.000 
27 -0.047 0.037 184.840 0.000 -0.061 0.029 185.930 0.000 
28 -0.044 0.026 186.170 0.000 -0.054 0.020 187.890 0.000 
29 0.005 0.103 186.190 0.000 -0.006 0.087 187.920 0.000 
30 0.002 0.063 186.190 0.000 0.011 0.072 188.000 0.000 
31 -0.058 -0.041 188.450 0.000 -0.046 -0.027 189.450 0.000 
32 -0.008 -0.003 188.500 0.000 0.010 0.012 189.530 0.000 
33 -0.016 0.011 188.670 0.000 -0.022 0.000 189.860 0.000 
34 0.021 -0.025 188.970 0.000 0.003 -0.053 189.860 0.000 
35 0.011 0.001 189.050 0.000 0.003 -0.007 189.870 0.000 
36 -0.080 -0.154 193.420 0.000 -0.079 -0.140 194.110 0.000 

 


