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1 Introduction

Macroeconomic forecasters often target real series that are aggregated from higher-frequency nom-

inal data. A case in point is the real price of crude oil, which plays a key role in macroeconomic

projections and has attracted considerable attention among forecasters (see, e.g., Baumeister and

Kilian, 2012; Alquist et al., 2013, and the survey of Filippidis et al., 2024). Notably, all existing

model-based forecasts of the monthly real price of crude oil rely on monthly averages of daily oil

prices, which facilitates incorporating monthly predictor variables and constructing historical price

series (Alquist et al., 2013).1 However, this form of temporal aggregation could also introduce infor-

mation loss that diminishes forecasting accuracy (see, e.g., Wei, 1978; Kohn, 1982; Lütkepohl, 1986;

Marcellino, 1999). This issue has recently been highlighted by Ellwanger and Snudden (2023a), who

demonstrate that the traditional random-walk forecast, which is the end-of-month no-change fore-

cast, outperforms all previous model-based forecasts of the real oil price at the one-month forecast

horizon.

The goal of this paper is to investigate how daily information can be used to improve model-

based forecasts of period average real series. To do so, we extend existing forecasting approaches

dealing with higher-frequency information to a setting where nominal daily data are converted to

real monthly average series. We henceforth refer to these approaches as disaggregated approaches,

and apply them to popular forecasting models of the real price of crude oil.

Our main contribution is to compare the effectiveness of disaggregated forecast approaches

to current forecast approaches that rely on monthly average real data. The proposed extensions

provide practical solutions on how to efficiently construct forecasts when the temporal aggregate

is expressed in real terms. The analysis quantifies the information loss from daily to monthly

aggregation and provides a unique perspective on the forecast gains from temporal disaggregation

in practice, which have thus far primarily focused on monthly to quarterly or quarterly to annual

aggregation.2

Our second contribution is to directly compare, for the first time, the effectiveness of model-

based forecasts of the monthly average real price of crude oil relative to the traditional random walk

forecast, which is the end-of-month no-change forecast. In contrast, prior studies have compared

1For example, structural models and forecasting approaches using data prior to 1983 typically rely on historical
refinery acquisition costs of crude oil, which are only available at the monthly frequency (Kilian, 2009; Alquist et al.,
2013).

2See, for example, Zellner and Montmarquette (1971); Abraham (1982); Lütkepohl (1986); Athanasopoulos et al.
(2011).
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model-based forecasts against a monthly average no-change forecast, which can result in spurious

predictability (Ellwanger and Snudden, 2023a). Importantly, this marks the first instance of testing

forecasts of the monthly average real oil price against the null hypothesis of no-predictability.

Our empirical exercises concentrate on the most common models in oil-price forecasting, which

include recursive forecasts from Autoregressive Moving Average (ARMA) models, Vector Autore-

gressive models (VARs), and direct forecasts from univariate and multivariate models. For each

modeling class, we propose practical techniques to integrate disaggregated approaches for period

average real forecasts. Together, these exercises provide a comprehensive comparison of the infor-

mation loss from temporal aggregation across forecast approaches.

The first disaggregated approach that we consider is the bottom-up approach (BU). This ap-

proach consists of forecasting the underlying high-frequency series and subsequently averaging the

forecasts to derive lower-frequency predictions. Theoretical results for ARMA processes show that

the BU approach is preferable to models estimated with average data (Tiao, 1972; Kohn, 1982),

even under parameter uncertainty (Lütkepohl, 1986). However, it remains an open question how

this approach performs in practice for aggregation from daily to monthly variables and for the real

price of crude oil in particular. In implementing the BU approach, we propose solutions for how to

deal with the aggregation from nominal to real variables, which is a setting frequently encountered

in macroeconomic forecasting.

The second disaggregated method is Period-End Point Sampling (PEPS) introduced by Ell-

wanger and Snudden (2023c). PEPS consists of estimating models with end-of-period data and

subsequently using point forecasts as predictions for period averages. By employing end-of-period

sampling during estimation, PEPS mitigates information loss caused by temporal aggregation.

Moreover, this approach allows models to be estimated at the same frequency as the forecast target

and is easy to implement in existing lower-frequency forecasting frameworks.

The third disaggregated method is MIxed-DAta Sampling (MIDAS), which has become a pop-

ular approach to deal with higher-frequency predictor variables (see Ghysels et al., 2007; Andreou

et al., 2010). Unlike previous MIDAS applications in crude oil price forecasting, which utilize

high-frequency financial variables as predictors of the monthly real price of oil (Baumeister et al.,

2015; Degiannakis and Filis, 2018; Zhang and Wang, 2019), we employ this framework to forecast

monthly oil prices with the underlying daily prices. To our knowledge, this is the first time the

MIDAS approach is used for univariate forecasts of lower-frequency data.

Our main finding is that regardless of the approach employed, forecasting models that utilize in-
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formation from daily prices substantially outperform conventional models estimated with monthly

averages, especially at short forecast horizons. The disaggregated methods offer robust improve-

ments in forecast accuracy and can reduce the mean squared forecast error (MSFE) by over 40%

at the one-month horizon. Furthermore, models employing daily oil prices can provide higher di-

rectional accuracy than traditional forecasting models for forecast horizons up to 24 months ahead.

These forecast gains are commensurate with those suggested in theory (Tiao, 1972; Kohn, 1982;

Lütkepohl, 1986), and substantially larger than those documented in practice in prior companions

of monthly to quarterly or quarterly to annual aggregation (see, e.g., Zellner and Montmarquette,

1971; Lütkepohl, 1986; Athanasopoulos et al., 2011).

Our replications find that existing model-based forecasts approaches only outperform the end-

of-month no-change at long horizons, and typically only for directional accuracy. In contrast, we

demonstrate for the first time that forecasting models of the real price of crude oil can outperform

the end-of-month no-change forecast at short forecast horizons when disaggregated techniques are

utilized. However, in such cases, the forecast gains are smaller than implied by comparisons with

the monthly average no-change forecast. These findings reinforce that the real price of crude oil is

more similar to asset prices than previously concluded.

An insight from our exercises is that much of the benefit of using daily oil prices stems from

the information contained in the last daily price in the forecaster’s information set. For example,

we find that in most cases, MIDAS regressions attribute the entire forecasting weight on the end-

of-month price and zero weight on any other daily prices. As a consequence, forecasting models

relying on monthly rather than daily data can provide effective forecasts, as long as they incorporate

information from end-of-month prices rather than monthly average prices. Although this result is

consistent with the well-known fact that the last available instantaneous price contains crucial

information about expectations (see, e.g., Fama, 1970), this idea is rarely exploited in forecasting

applications of average data.

In examining the effectiveness of different forecasting approaches in a setting of temporally

aggregated variables, our study also contributes to the broader debate about direct versus recursive

forecasting approaches. Existing studies have compared direct and recursive forecast approaches

within a single frequency, suggesting that recursive forecasts often outperform direct forecasts (see,

e.g., Ing, 2003; Marcellino et al., 2006; Chevillon, 2007). Our findings reveal that while recursive

forecasts typically outperform direct forecasts when estimated with monthly average data, they

perform similarly when estimated with temporally disaggregated data.
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Although the idea to utilize the underlying daily oil-price data in forecasts of the monthly real

price of oil is new, our results are consistent with several distinct pieces of evidence provided in

earlier studies. For instance, Ellwanger and Snudden (2023b) demonstrate that using end-of-period

oil futures prices rather than period-average oil futures prices leads to significant improvements in

futures-based forecasts of the real oil price. Baumeister and Kilian (2014) show that aggregating

forecasts of monthly average oil prices to quarterly averages is preferable to computing forecasts

with quarterly models, while Baumeister and Kilian (2012) shows that forecasting gains from data

revisions primarily arise from improved information on crude oil prices. Our study expands on

these findings by showing that integrating information from daily prices into model-based forecasts

of the monthly real price of crude oil can substantially enhance their accuracy compared to original

specifications.

2 Method

The focus of our study is real-time forecasts of the level of the monthly average real price of crude

oil, which is the standard approach in the literature (see, e.g., Baumeister and Kilian, 2012; Alquist

et al., 2013, and the surveys of Ellwanger and Snudden 2023a; Filippidis et al., 2024).

For Brent and WTI, the average monthly nominal price is the simple average of the daily

closing prices, S̄t = 1
n

∑n
i=1 St,i, where St,i stands for the nominal spot price at the closing of

day i in month t, and where n is the number of business-calendar days within a month.3 Nominal

prices are converted to real prices using the monthly seasonally adjusted U.S. consumer price index,

denoted by CPIt. The conventional monthly average real price of crude oil can be expressed as the

monthly average of daily real prices, Rt,i:

R̄t =
1
n

∑n
i=1 St,i

CPIt
=

1

n

n∑
i=1

St,i

CPIt
=

1

n

n∑
i=1

Rt,i.

Following the convention in the literature, we assume that the forecaster uses the available

information at the end of month t to form their prediction of the monthly average real price in

the h months ahead. The standard approach for forecasts of the real price of crude oil is to ignore

daily oil prices and to forecast the h-step-ahead monthly average price, R̄t+h, using the history

of monthly average oil prices up to R̄t. However, even when the goal is to forecast the monthly

3A different oil price series that has been used widely in forecasting applications is the monthly US refiners’
acquisition costs of crude oil. We discuss the treatment of this series in Section 2.2.
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average price, incorporating the information contained in higher-frequency price observations could

be beneficial for the accuracy of forecasts.

For example, if the underlying data are generated by an ARMA process, relying on temporally

aggregated data will result in a loss of forecast efficiency that increases with the persistence of

the underlying data and the number of higher-frequency observations that are aggregated (Tiao,

1972; Kohn, 1982). Moreover, Lütkepohl (1986) demonstrated that utilizing the disaggregated data

results in superior forecasts even under parameter uncertainty.4 Based on these insights, this study

examines for the first time how the series of underlying daily oil prices up to Rt,n can be used to

improve forecasts of the monthly average real price of crude oil.

2.1 Forecast Evaluation

Throughout the paper, we follow existing practice in the literature and report MSFE ratios relative

to the conventional monthly average no-change forecast (see, e.g., the survey of Filippidis et al.,

2024). The MSFE ratio for the h-steps-ahead forecast, MSFEratio
h , is calculated as the ratio of

the MSFE of the model-based forecast to the MSFE of the monthly average no-change forecast:

MSFEratio
h =

∑Q
q=1(R̄q+h − ˆ̄Rq+h|q)

2∑Q
q=1(R̄q+h − R̄q|q)2

, (1)

where ˆ̄Rq+h|q is the conditional model forecast for the h-steps-ahead aggregated observation R̄q+h

for all periods of the evaluation sample, q = 1, 2, . . . , Q, and R̄q|q is the real-time monthly average

no-change forecast. We also report the p-values for the test of equal predictive accuracy relative to

the monthly average no-change forecasts following Diebold and Mariano (1995).5

The mean directional accuracy is reported using the success ratio, which indicates the proportion

of times that the model-based forecasts correctly predict the direction of the change in the monthly

average real price. Consistent with previous real-time exercises, the success ratio for forecast horizon

h, SRh, is:

SRh =
1

Q

Q∑
q=1

1[sgn(R̄q+h − R̄q) = sgn( ˆ̄Rq+h|q − R̄q|q)], (2)

where 1[·] is an indicator function and sgn(·) is the sign function. The null hypothesis of no

4In contrast, Lütkepohl (1984) shows that for contemporaneous aggregation (summation over subcomponents),
the gains of using aggregated versus disaggregated data are unclear under parameter uncertainty.

5The use of real-time data and the iterative out-of-sample forecasts does not fulfill the assumptions underlying the
Diebold-Mariano test (Diebold, 2015). As in extant studies, the p-values are still reported with this caveat in mind.
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directional accuracy (corresponding to a success ratio equal to one half) is tested using Pesaran

and Timmermann (2009).

In addition to the standard practice of comparing forecasts against the monthly average no-

change forecast, we compare, for the first time, model-based forecasts against the traditional random

walk forecast, which is the end-of-month no-change forecast. The end-of-month no-change forecast

is the only no-change forecast reflecting the null hypothesis that all future prices – both daily prices

and average prices — are conditionally unpredictable and therefore corresponds to the traditional

random walk forecast used in economics and finance. In contrast, forecast improvements relative

to the monthly average no-change forecast are theoretically expected for all (vector) autoregressive

integrated moving average representations of the daily data (Weiss, 1984; Marcellino, 1999). More-

over, Ellwanger and Snudden (2023a) shows that for the real price of crude oil, the end-of-month

no-change forecast is significantly more accurate than the monthly average no-change forecasts for

up to one year ahead. As such, comparisons with the end-of-month no-change forecast are necessary

to provide evidence for the practical usefulness of specific model-based forecast approaches and for

the predictability of the monthly average real price of crude oil.

The series of real end-of-period observations, Rt,n, is constructed using Rt,n = St,n/CPIt, and

the real-time equivalent Rt,n|t = St,n/CPIt|t. The measure of real end-of-month prices is consistent

with the common practice in other forecast applications, such as bilateral exchange rates (Meese

and Rogoff, 1983) and primary commodity prices (West and Wong, 2014). Forecast improvements

relative to the end-of-month no-change forecast are tested by replacing the conventional monthly

average no-change forecast in the tests of Pesaran and Timmermann (2009) and Diebold and

Mariano (1995). Throughout all tables, significant improvements over the end-of-month no-change

forecast at the five percent significance level are indicated in bold.6

2.2 Disaggregated Data

We study model-based forecasts of the three oil-price benchmarks used in the literature: West Texas

Intermediate (WTI), Brent, and US refiner acquisition cost of crude oil, imported (RAC). Crude oil

prices are obtained from the U.S. Energy Information Administration (EIA). The monthly average

and daily prices for WTI and Brent are available in real time. The price deflator is the seasonally

adjusted U.S. consumer price index obtained from the FRASER database of the Federal Reserve

6Tables reporting MSFE and success ratios relative to the end-of-month no-change forecast instead of the conven-
tional monthly average no-change forecasts are available upon request.
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Bank of St. Louis and the real-time database of the Philadelphia Federal Reserve.

Unlike WTI and Brent, the RAC is a survey of the monthly average acquisition costs and is

only observed at the monthly frequency. Implementing forecast approaches relying on disaggregated

data for the RAC is complicated by the fact that daily RAC data does not exist. For our empirical

analysis, we impute daily RAC observations by applying the growth rate of the daily WTI oil price

over the monthly average WTI oil price to the monthly RAC price: SRAC
t,i = S̄RAC

t · (SWTI
t,i /S̄WTI

t ),

where St,i refers to the nominal closing price on the day i and the superscripts RAC and WTI

denote the nominal RAC series and the nominal WTI prices, respectively.7 The idea of imputing

RAC observations with WTI prices has ample precedent in the oil-price forecasting literature. For

example, Baumeister and Kilian (2012) nowcast the average nominal RAC with the growth rate of

the WTI price and use WTI futures prices to construct futures-based forecasts for RAC. The tight

empirical correlation between WTI prices and the RAC implies that these nowcasts and imputations

yield good results in practice.

Our exercises also replicate and extend forecasts from the Kilian and Murphy (2014) VAR

model, which includes the real price of crude oil, the growth rate of global crude oil production,

a proxy for the change in global crude oil inventories, and an indicator of real economic activity.

An additional contribution of this paper is to extend the real-time data of Baumeister and Kilian

(2012) using historical data vintages from the EIA’s Monthly Energy Review and Short-Term

Energy Outlook. Unlike earlier updates of this dataset provided in Garratt et al. (2019), we were

able to collect all monthly vintages after 2010M12, which means that this is the first update to

include all revisions for the entire history of each vintage.8 Real-time data vintages start in 1991M12

and contain historical data from 1973M1 onward. Real-time data on U.S. crude oil inventories, U.S.

petroleum inventories, and OECD petroleum inventories are obtained from historical releases in the

EIA’s Monthly Energy Review or the International Data Browser. The real-time version of Kilian

(2009)’s real economic activity index is computed using the corrected formula (Kilian, 2019).

All nowcasts follow Baumeister and Kilian (2012). For example, the monthly average RAC is

nowcasted using the month-over-month growth rate of the monthly WTI series. Any missing real-

time observations for the consumer price index are nowcasted using the average historical growth

rate. The results are qualitatively robust to alternative methods of nowcasting the CPI and the

7Very similar forecasts are obtained by imputing end-of-month RAC prices from Brent rather than WTI prices.
8The data appendix contains detailed descriptions of the real-time vintages, nowcasts, and data sources. This

real-time database is updated monthly and available to download along with further documentation.
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use of ex-post revised data.9

The series of daily and monthly WTI and Brent prices provided by the EIA begin in 1986M1

and 1987M5, respectively, and the estimation of models at the daily frequency begins on those

dates. For forecasting models estimated at the monthly frequency, including models estimated

via PEPS, prices are backcasted to 1973M1. Specifically, the monthly average and end-of-month

prices for WTI and Brent are backcasted to 1983M4 using the growth rate of the monthly average

and end-of-month price of the front WTI futures contract, respectively. Then, following standard

practice, all monthly average prices before 1983M4 are backcasted using the growth rate of the

monthly average RAC. For the backcast of end-of-month prices before 1984M4, we apply the same

growth rate to the last available end-of-month observation rather than the last observed monthly

average observation. None of these backcasting choices are crucial for our results, and our main

findings are robust to estimating models with data starting in 1983 or 1986.

3 Model-Based Forecasts

We focus our analysis on the most common types of model-based forecasts in the literature (see, e.g.,

the survey of Filippidis et al., 2024). Specifically, we examine disaggregated forecasting approaches

for recursive forecasts from univariate ARMA models and from VARs. We also examine direct

univariate forecasts from MIxed-DAta Sampling (MIDAS) and Linear Regression Models (LRM)

with exogenous predictor variables. The selection of models comprises univariate and multivariate

methods for direct and recursive forecasts. Hence, our exercises provide a comprehensive overview of

the usefulness of disaggregated approaches in different settings encountered in applied forecasting.

All forecasts are evaluated out-of-sample with an expanding window beginning in 1992M1and the

evaluation window ends in 2021M1.

3.1 ARMA Forecasts

The most common model-based forecasts for crude oil prices are recursive forecasts from ARMA

models. These univariate time-series models commonly serve as an alternative benchmark in fore-

cast exercises and tend to be more accurate predictors of the real price of crude oil than the

conventional average-price no-change forecast (Baumeister and Kilian, 2012; Funk, 2018; Snudden,

9This is consistent with the findings of (Baumeister and Kilian, 2012; Ellwanger and Snudden, 2023b), which show
that fluctuations in the CPI deflator are generally small compared to fluctuations in nominal oil prices and tend to
have minimal impact on forecasts.
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2018).

The convention in the literature is to estimate ARMA models for real oil prices in log levels.

Let the log level of the real price of oil be r̄t = ln(R̄t), where ln is the natural log function. The

ARMA(p, q) with p autoregressive parameters, q moving-average coefficients, and innovations ϵ̌t is

given by:

ǎ(L)r̄t = č+ b̌(L)ϵ̌t ∀ t. (3)

where č is a constant and L is the lag operator such that Lyt = yt−1, b̌(L) = (1+ α̌1L+ · · ·+ α̌qL
q),

and a(L) = (1− ρ̌1L−· · ·− ρ̌pL
p). The estimated parameters are used to construct recursive model-

based forecasts, ˇ̄rt+h|t, which are converted back into real prices in levels, ˇ̄Rt+h|t = exp
(
ˇ̄rt+h|t

)
,

where exp is the exponential function.

One advantage of using monthly average data is that the prices of WTI and Brent, which are

only available since the early 1980s, can be backcasted to 1973 using the RAC.10 This is useful

because the backcasting of all series back to 1973 provides a better estimate of the long-run mean,

which could improve the forecast accuracy at longer horizons. However, this advantage has to be

weighed against the efficiency loss from using aggregated data. Therefore, the empirical question

of which method is more effective for forecasts of the real price of crude oil remains.

The first disaggregated approach that we consider for ARMA models is the BU approach.

Empirical evidence for the BU approach suggests that the approach improves forecast efficiency

in some, but not all cases (Zellner and Montmarquette, 1971; Abraham, 1982; Lütkepohl, 1986;

Athanasopoulos et al., 2011). However, existing studies have only considered aggregation from

monthly to quarterly frequency or from quarterly to annual frequency. To the best of our knowledge,

this paper is the first to consider aggregation from daily to monthly variables. The information

loss generally increases when aggregation occurs over more observations (Tiao, 1972). Moreover,

most of the information loss occurs from aggregation over the first few observations. The daily

to monthly aggregation moves from no aggregation, n = 1, to a substantive aggregation n = 21.

In contrast, monthly to quarterly aggregation starts from data already aggregated, n = 21, to a

higher degree of aggregation, n = 63. Thus, the information loss from daily to month aggregation

is expected to be larger than monthly to quarterly aggregation.

One potential complication with constructing BU forecasts for monthly average real data is

10The RAC series itself is imputed for the year 1973 following Mork (1989).
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that CPI is only available at the monthly frequency. This may explain why the BU approach has

been overlooked in applications to real macroeconomic variables that are aggregated from a daily

frequency (see, e.g., Box et al., 2015). For the baseline results, we construct forecasts of the daily

nominal price of crude oil. We then average the daily forecasts to the monthly frequency and deflate

the monthly average forecast using the CPI forecast. This approach mirrors the current practice

of deflating forecasts of nominal monthly average oil prices into real terms using CPI forecasts in

futures-based forecasts (Baumeister and Kilian, 2012; Ellwanger and Snudden, 2023b).

Since the nominal daily price is non-stationary, we estimate the model using the growth rate

of nominal daily prices, gt,i = St,i/St,i−1. The ARMA(p, q) model for the growth rate of daily oil

prices is given by

â(L)gt,i = ĉ+ b̂(L)ϵ̂t,i ∀ i, t, (4)

where â(L) and b̂(L) are the standard lag polynomials associated with the daily autoregressive and

moving average parts, respectively. Estimated parameters are used to construct recursive model-

based forecasts of the growth rate of daily nominal crude oil prices, ĝt,n+k|t, where k is the forecast

horizons in days. The forecasts for the level of the nominal price on day i of month t + h, given

month t information, are the model-implied cumulative net growth rate between day t, n and day

t+ h, i, denoted by ĝt+h,i|t:

Ŝt+h,i|t = (1 + ĝt+h,i|t) · St,n. (5)

Then, nominal daily forecasts are averaged to the monthly frequency and converted into forecasts

of real prices by deflating the monthly nominal forecasts by ˆCPIt+h|t, the expected CPI deflator:

ˆ̄Rt+h|t =
1
n

∑n
i=1 Ŝt+h,i|t

Et,n[ ˆCPIt+h|t]
, ∀ h. (6)

We use the standard practice of computing CPI forecasts to discount nominal prices. Following

Baumeister and Kilian (2012), the CPI forecast is constructed by expanding the (nowcasted) current

CPI observations with the average historical rate of inflation since 1986M7.

The second disaggregated approach for ARMA models is period-end point sampling (PEPS).

This method estimates the model using point-in-time sampled end-of-period data and uses the

point forecast as the forecast of the average. Ellwanger and Snudden (2023c) document that for

persistent data, the forecast accuracy of the PEPS approach is both theoretically and empirically

10



similar to that of the BU approach.

Implementing the PEPS approach is straightforward, as it merely requires replacing the time

series of monthly average real prices with the time series of real end-of-period observations, Rt,n,

during the model estimation. The use of end-of-month point-in-time sampling is desirable, as the

last observed price reflects the latest information available to the crude oil market participants

and the forecaster. On the contrary, older prices generally reflect outdated information that could

deviate from current market expectations. The estimation of models with end-of-month real prices

is also common for forecasts of end-of-month real prices such as bilateral exchange rates (Meese

and Rogoff, 1983) and primary commodities (West and Wong, 2014).

For the PEPS approach, the model estimation closely resembles that of the traditional approach,

which relies on monthly average data. Specifically, the ARMA(p, q) model is estimated at the

monthly frequency using a time series of end-of-month prices in log-real levels and expressed as:

ã(L)rt,n = c̃+ b̃(L)ϵ̃t ∀ t. (7)

Again, the estimates are used to construct recursive model-based forecasts of the end-of-month

real price of crude oil r̃t+h,n|t which are converted back into real prices in levels, R̃t+h,n|t =

exp
(
r̃t+h,n|t

)
. Then the end-of-month forecasts are used as forecasts of the corresponding monthly

average value, ˜̄Rt+h|t = R̃t+h,n|t.

Regarding lag length, previous studies advocate the use of 12 or 24 lags when estimating autore-

gressive models to predict real crude oil prices (Baumeister and Kilian, 2012). However, it is well

known that temporal aggregation will always result in the introduction of moving average terms,

even when the data generating process of the daily data is given by an AR process (Telser, 1967;

Weiss, 1984). The in-sample analysis of both real and nominal daily crude oil prices suggests an AR

model with one or two coefficients when using information criterion. This is theoretically consistent

with an ARMA representation of the monthly average data and an AR(1) or AR(2) representation

for the point sampled data used in the PEPS approach. For completeness, we therefore examine

the forecast performance from the standard AR(12) model and also include the forecasts from the

AR(2) and ARMA(1,1) models. Qualitatively, our subsequent results are not affected by alterna-

tive lag specifications considered in the literature. Instead, the information loss from aggregation

turns out to be of first-order importance for the model’s forecast performance relative to the choice

of model parameterization.
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Table 1. Real-time ARMA Forecasts of the Real Price of WTI Crude Oil

Note: Real-time, out-of-sample forecasts for the monthly average real price of WTI crude oil, 1992M1–2021M1.
“Bottom Up” is the ex-post averaged forecast of daily prices; “Period-End-Point Sampling” use the end-of-month
forecast (Ellwanger and Snudden, 2023c). Brackets report the p-values for the serial dependence robust tests of
Pesaran and Timmermann (2009) for the null of no directional accuracy and of Diebold and Mariano (1995) for
equal MSFEs relative to the monthly average no-change forecast. Boldface values indicate statistically significant
improvements over the end-of-month no-change forecast at the five percent significance level.

The first three columns of Table 1 present the results for the models estimated with the conven-

tional monthly average data. For most models and forecast horizons considered, the model-based

forecasts outperform the average price no-change forecasts, in line with Baumeister and Kilian

(2012). Interestingly, in contrast to existing recommendations, the model estimated with two au-

toregressive parameters outperform the models estimated with twelve parameters in terms of the

MSFE for all potential ending points of the evaluation sample since 2008 at all forecast horizons.

However, the improvements against the conventional monthly average no-change forecast appear

relatively modest (below 10 percent) and do not constitute significant improvements at the five per-

cent level at any horizon. Only for directional accuracy at the 24-month horizon do they outperform

the end-of-month no-change forecast at the 5 percent significance level.

The corresponding results for the BU approach, displayed in columns 4-6 of Table 1, present a

very different pattern. At the one-month horizon, all three models yield about 40 percent improve-

ments in the MSFE and a directional accuracy of 72 percent. The magnitude of the improvements

at the one-month horizon is remarkable, as the forecasts are more accurate than any other model-

based forecast previously reported in the literature. However, the absence of bold-faced values

highlights that at the 5 percent significance level, none of these forecasts are significantly more

accurate than the traditional random walk forecast, which is the end-of-month no-change forecast.

In addition, the performance of the BU forecasts deteriorates quickly at longer forecast horizons.
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The forecasts from the PEPS approach are evaluated in the final 3 columns of Table 1. For

all horizons and models, the forecasts outperform the conventional monthly average no-change

benchmark. At the one-month-ahead, the PEPS approach results in the largest improvements in

forecast accuracy of up to 44 percent, which are significant at the 0.1 percent significance level. For

all three models, forecast criteria, and for all horizons, the models estimated with end-of-period

prices provide at least equally good forecasts of average prices than models estimated with average

prices. Moreover, the bold values show that the PEPS forecasts significantly predict the direction

of change in prices one-month ahead relative to the end-of-month no-change forecast at the five

percent level.

The deterioration of the BU forecasts at longer horizons is because the model is estimated in

growth rates, which loses information about the historical mean. For robustness, we also consider

BU forecasts for the level of real daily prices. Following Froot and Ramadorai (2005), we impute

a daily CPI by assigning the monthly CPI index to the last day of the month and use linear

interpolation to impute a daily CPI measure, CPIt,i. The model is then estimated using the log

level of the daily real prices, and forecasts of daily real prices are averaged to the monthly frequency.

The results, presented in the online appendix, show little difference in the forecast accuracy between

the distinct BU approaches at short horizons. The results also show that applying the BU approach

to daily prices in levels instead of growth rates slightly improves longer-horizon forecasts, albeit by

less than the improvements obtained under the PEPS approach. This pattern can be explained by

the fact that forecasts from models with daily prices only use data beginning in 1986M1, whereas

models estimated with monthly average data and PEPS use data that start in 1973M1. The

results highlight the importance of using improved information in crude oil prices, while alternative

assumptions for the CPI appear to play only a minimal role.

For each oil price series, Figure 1 reports the evolution of the MSFE and the success ratios for

the one-month-ahead forecast from the AR(2) models estimated with average, end-of-month, and

daily data. The results suggest that the forecast performance of the BU approach closely tracks

that of the end-of-month no-change forecast throughout the forecast evaluation sample, whereas

the PEPS forecasts tend to outperform the end-of-month no-change forecast in the later half of the

sample. For the BU and PEPS approach, the gains upon the monthly average no-change forecast

at the one-month-ahead horizon are significant at the 5 percent level for WTI and RAC crude oil

prices for all potential ending dates of the forecast evaluation sample between 1997M1 and 2021M1.

For all series and all potential ending points of the evaluation sample, the models estimated with
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Figure 1. Evolution of One-Month-Ahead Forecast Evaluation Criteria for AR(2) Models

Note: One-month-ahead, out-of-sample, real-time forecasts of alternative monthly average real price of crude oil
series, 1992M1–2021M1. Forecasts from AR(2) models estimated with monthly “Average Prices”, the “Bottom-Up”
approach, and the “PEPS” approach. “Random Walk” is the end-of-month no-change forecast. MSFE ratios are
expressed relative to the monthly average no-change forecast. The first 60 months are omitted to reduce starting-
point effects.

average prices do not outperform the end-of-month no-change forecast.

Overall, these results indicate that suitably constructed univariate time-series models that ex-

ploit disaggregated prices outperform models estimated with monthly average prices. Moreover,

models estimated with disaggregated oil prices also provide statistically significant improvements

in directional accuracy over the end-of-month no-change forecast at the one-month horizon. These

findings are consistent with theoretical results indicating that the information gains from using

daily rather than monthly average data may be substantial, particularly for short forecast horizons

(Wei, 1978). The gains in our setting are much greater than the gains from using monthly series

instead of quarterly aggregated series for crude oil prices (Baumeister and Kilian, 2014) and other
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economic variables (see, e.g., Zellner and Montmarquette, 1971; Abraham, 1982; Lütkepohl, 1986;

Athanasopoulos et al., 2011).

3.2 MIDAS Forecasts

An alternative disaggregated approach that we examine is MIDAS (Ghysels et al., 2007; Andreou

et al., 2010). The MIDAS approach constructs direct forecasts of lower-frequency variables with

higher-frequency predictors. Previous applications of the MIDAS model to oil-price forecasts have

focused on the role of high-frequency financial variables as predictors (Baumeister et al., 2015;

Degiannakis and Filis, 2018; Zhang and Wang, 2019). Instead, we explore the relationship between

daily and monthly prices of crude oil in a univariate setting. To the best of our knowledge, the

MIDAS approach has only been applied for exogenous predictor variables under the assumption

that the underlying higher-frequency data of the forecast variable is not observed. Our analysis thus

provides a novel application of MIDAS to univariate variables with a known form of aggregation.

MIDAS forecasts of the monthly average real price of crude oil are constructed using daily oil

prices via

R̄t+h = ah + βhB(L0/m; θh)Rt,n + ϵt+h, (8)

where R̄t+h is the monthly average real price of crude oil, m is the maximum number of daily lags

used in estimation, L1/mRt,n = Rt,n−1 denotes the lag operator at the daily frequency, and the

restrictions on the parameters on the daily data are given by the a lag distribution B(L0/m; θh),

for instance the Beta function or the Almon Lag.

In this framework, the estimates of the restricted parameter profiles provide the weights given to

the different daily prices. We estimate two of the most common restricted parameter specifications:

the normalized exponential Almon lag weight function and the normalized Beta lag polynomial,

both for alternative lag lengths of up to 20 daily observations.

Interestingly, the full-sample estimates are conclusive that for WTI and RAC, the coefficients

on all daily prices except the last daily price are zero. A similar pattern is obtained for Brent,

except for the 3- and 6-month-ahead forecasts, for which there are some small non-zero coefficients

on daily observations beyond one lag. The finding is consistent with the results of Section 3.1,

suggesting that the last observed daily oil price contains practically all the relevant information for

forecasting the real price of crude oil in a univariate setting.

In the case that the only non-zero weight is on the last observation, Equation 8 simplifies to
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the following regression equation:

R̄t+h = α̂h + β̂hRt,n + ϵ̂t+h, (9)

i.e., only the last observed daily closing price is used to provide direct forecasts of future average

prices. Equation 9 can be interpreted as a special case of the unrestricted MIDAS (UMIDAS)

approach of Foroni et al. (2015, 2019), which implies estimating direct relationships between the

underlying high-frequency observations and the target variable instead of estimating a parame-

terized polynomial function. The UMIDAS specification also has the benefit of highlighting the

conceptual differences between the alternative disaggregated approaches. For the remainder of the

section, we therefore work with UMIDAS forecasts of Equation 9.

Direct forecasts of the real price of oil using real end-of-month prices can also be implemented

via PEPS. In this case, the model is estimated with real end-of-month prices as the dependent

variable,

Rt+h,n = α̃h + β̃hRt,n + ϵ̃t+h. (10)

Then the end-of-month forecast is used as a forecast of the monthly average price, ˜̄Rt+h = R̃t+h,n.

Finally, we contrast the MIDAS and PEPS forecasts with direct forecasts estimated on average

prices,

R̄t+h = α̌h + β̌hR̄t + ϵ̌t+h. (11)

For all forecasts, parameters are estimated with an expanding sample window using real-time data,

and forecasts are computed out-of-sample.

Table 2 presents the results for the MIDAS and PEPS forecasts along with the direct forecasts

constructed from the monthly average prices. It shows that the MIDAS forecasts (columns 4-6)

and the PEPS forecasts (columns 7-9) are very similar for all three oil-price series and across all

forecast horizons. For all series and forecast horizons, these forecasts are at least as accurate as

the direct forecasts estimated with average prices (columns 1-3), and at short-horizons outperform

them by a substantial margin. As shown in the online appendix, these forecast gains are robust

across the entire forecast evaluation sample.

However, the forecast gains are very similar to those obtained from the end-of-month no-change

forecasts. The bold values indicate that at the 5 percent significance level, the null hypothesis of

no directional accuracy relative to the end-of-month no-change forecast can only be rejected for
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Table 2. Direct Forecasts of the Real Price of Crude Oil with MIDAS and PEPS

Note: Real-time, out-of-sample-forecasts of the real price of crude oil, 1992M1–2021M1. Brackets report the p-
values for serial dependence robust tests of Pesaran and Timmermann (2009) for the null of no directional accuracy
and of Diebold and Mariano (1995) for equal MSFEs relative to the monthly average no-change forecast. Boldface
values indicate statistically significant improvements over the end-of-month no-change forecast at the five percent
significance level.

the 1-month-ahead PEPS forecasts for RAC. At the 2-year horizon, all forecasts exhibit significant

directional accuracy relative to the end-of-month no-change forecast for WTI and RAC. In terms

of the MSFE, we find no evidence of statistically significant improvements over the end-of-month

no-change forecast for any direct forecast approach.

A key implication from the exercises presented in this section is that in practice, it makes little

difference whether the forecaster uses the real monthly average prices or the real end-of-month price

as the target variable in the estimation of the forecasting model. By contrast, using the information

contained in disaggregated oil prices and in particular the last observed oil price in the forecaster’s

information set is crucial for constructing accurate forecasts.

The analysis of the MIDAS and BU forecasts provides evidence of the relative merits of direct

and recursive forecasts in the context of temporal disaggregation. Previous comparisons of direct

and recursive forecasts assume that variables are observed at the same frequency (see, e.g., Ing,

2003; Marcellino et al., 2006; Chevillon, 2007). These studies generally suggest that recursive

methods provide better forecasts compared to direct methods. However, the forecasts from the

direct MIDAS approach and the recursive BU forecasts tend to be equally accurate at all horizons,

especially when using the backcasted end-of-month data. Thus, we find very little difference between

direct and recursive forecasts when the data are temporally disaggregated, and both approaches

substantially improve upon the forecasts constructed using averaged data. Again, the findings

confirm that accounting for temporal aggregation is of first-order importance compared to other
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modeling choices.

3.3 Exogenous Predictor Variables

In this section, we examine the usefulness of daily oil prices in predicting the real price of crude oil

in a setting with exogenous predictor variables. The most common way to incorporate exogenous

predictors is via direct forecasts from Linear Regression Models (LRMs). Such models are widely

used to provide individual forecasts of the real price of crude oil (see, e.g., Baumeister and Kilian,

2012; Alquist et al., 2013; Chen, 2014) and are also key components of model averaging exercises

(Baumeister et al., 2014; Wang et al., 2015; Baumeister and Kilian, 2015; Garratt et al., 2019).

The predictive regressions in previous studies take on the form:

ˇ̄Rt+h = R̄t · (1 + α̌h + β̌hXt), (12)

where Xt is the monthly percent change of predictor variable and α̌h and β̌h are the least-squares

estimates.

For illustrative purposes, this section focuses on a predictor variable that has been shown to

yield particularly accurate forecasts of the real price of crude oil, namely the NYSE Arca (AMEX)

oil index, a portfolio of oil-sensitive stock prices (Chen, 2014).11 The predictor variable, Xt is

constructed using the end-of-month AMEX stock index, pt,n, in monthly growth rates, i.e., Xt =

pt,n/pt−1,n − 1.

In addition to the standard specification of Equation 12, we propose a version of the predictive

regression where the starting point of the regression is not the monthly average real price, but

rather the end-of-month real price. This specification reads

ˆ̄Rt+h = Rt,n · (1 + α̂h + β̂hXt), (13)

i.e., the monthly average prices, R̄t, on the right-hand side of equation 13 is replaced with the

end-of-month price, Rt,n. Intuitively, this means that the forecast is started from the end-of-month

real price, which is the last non-averaged price available to forecasters.

In addition, we consider the PEPS specification of the LRM which produces a direct forecast

11In the online appendix, we document that the results are robust to an alternative predictor variable from the
Commodity Research Bureau’s (CRB) index of the price of industrial non-oil raw materials (used by Baumeister and
Kilian, 2012; Alquist et al., 2013, among others).
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of the end-of-month real price via

R̃t+h,n = Rt,n · (1 + α̃h + β̃hXt). (14)

As for the other PEPS specifications, the forecast of the end-of-month price is then used as a

forecast of the monthly average price, i.e., ˜̄Rt+h = R̃t+h,n.

For all forecasts, parameters are estimated recursively using real-time data and forecasts are

computed out-of-sample. We set αh = 0 which is common in the literature and is found to provide

better forecasts for all series, especially at the two-year horizon. Including a constant has only

minimal effects on forecasts below one year.

Table 3. Real-time Forecasts of the Real Price of Crude Oil Using the NYSE Arca Oil Index

Note: Real-time, out-of-sample forecasts of the real price of crude oil, 1992M1–2021M1. Regression-based direct
forecasts using the NYSE Arca oil index. Brackets report the p-values for serial dependence robust tests ofPesaran
and Timmermann (2009) for the null of no directional accuracy and of Diebold and Mariano (1995) for equal MSFEs
relative to the monthly average no-change forecast. Boldface values indicate statistically significant improvements
over the end-of-month no-change forecast at the five percent significance level.

The forecast performance of the two approaches is reported in Table 3. Columns 1-3 present the

results for models estimated with monthly average oil prices. For all three oil series, the forecasts

using monthly average prices significantly outperform the average-price no-change forecast at the

one-month horizon. The forecast gains are very similar to those reported in Chen (2014) and are

robust over time, as shown in the online appendix. However, none of the forecasts obtained from the

traditional forecasting model significantly outperform the end-of-month no-change forecast at any

horizon. Again, this shows the importance of comparing forecasts against the no-change forecast

from the end-of-month real price.

Columns 4-6 present the forecast performance of the disaggregated approach described by Equa-

tion 13, while the last three columns present the performance of the PEPS approach, Equation 14.
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These two alternative specifications perform remarkably similarly at all horizons and outperform

the forecasts computed with monthly average oil prices at the one- and three-month horizons. Fore-

casts from these disaggregated approaches show MSFE ratios as low as 0.54 and success ratios as

high as 0.72 at the one-month horizon.12 For Brent, the improvements in the MSFE and success

ratio are also significant at the 5-percent significance level relative to the end-of-month no-change

forecast at the one-month horizon. This finding is impressive, as it is the first time that any forecast

of the monthly average real price of crude oil has been shown to yield significant improvements

for both MSFE and the success ratio at the one-month horizon relative to the end-of-month no-

change forecast. The MSFE gains are about 6 percent relative to the end-of-month no-change

forecast, which is smaller than the 45 percent relative improvement implied by comparisons with

the monthly average no-change forecasts. In terms of magnitude, the gains are more reminiscent

of the short-horizon predictability occasionally documented for asset prices.

The regression estimates presented in Table 4 for Equations 12–14 provide useful intuition

for our results. For the one-month-ahead forecast regressions using monthly average prices, the

estimates of β̌1 are around 0.6 and the R-squared is about 15%. On the contrary, the estimates of

β̂1 and β̃1 for the disaggregated regressions drop to 0.2–0.3, and the R-squares fall to 2-4%. Despite

the decrease in the coefficients and the measure of fit, the out-of-sample forecasts of Table 3 imply

that the AMEX index provides some additional predictive power that is not contained in the last

available daily oil price.

Table 4. Coefficient Estimates for One-Month-Ahead Predictive Regressions Using the NYSE
Arca (AMEX) Oil Index

Note: Coefficient estimates of α̂ and β̂ from Equations 12–14 for different crude oil price series, 1992M1–2021M1.
HAC standard errors in parenthesis.

The intuition for these results becomes clearer when we consider the effect of averaging on the

informational content of prices. Aggregation of daily prices into monthly averages results in a loss

of information because it dilutes the latest information contained in the end-of-month price with

12As shown in the online appendix, this result is robust to alternative evaluation sample end-point.
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stale information from previous days. In contrast, end-of-month prices are used for the AMEX

index, which implies that this information loss does not occur for the predictor variable. As both

the AMEX and oil prices are likely to respond to similar news about the global oil market, the use of

the end-of-month AMEX index helps recover some information lost by averaging the price of crude

oil. The results of this section suggest that most of the forecasting gains in the original specification

of Chen (2014) stem from the recovery of lost information from averaging. However, the fact that

we still find some improvement in the forecast accuracy for the disaggregated approaches indicates

that the AMEX index contains some additional information beyond that contained in the last price

of oil.

Our results indicate that even though the use of disaggregated oil prices is of first-order impor-

tance, the addition of external predictor variables can significantly improve the forecasts of the real

price of crude oil. This finding is remarkable because it is the first time that any forecast of the real

price of crude oil has been shown to significantly outperform the end-of-month no-change forecasts

at the one-month horizon. It is unclear whether other variables that have been shown to predict

the real price of crude oil also contain predictive power in specifications relying on end-of-month

oil prices, suggesting that their predictive power needs to be reevaluated.

3.4 Vector Autoregressive Models

The final model is the 4-variable VAR model of the global market for crude oil of Kilian and

Murphy (2014), which was first applied for real-time forecasts by Baumeister and Kilian (2012)

and has been widely used and extended in the literature (see, e.g., Funk, 2018; Snudden, 2018,

among others). The model contains four variables: the monthly average real price of crude oil, the

growth rate of global crude oil production, a proxy for the change in global crude oil inventories,

and the real economic activity index (REA) as a measure of global economic activity. We focus on

the original specification of Baumeister and Kilian (2012) for illustrative purposes, since it remains

the benchmark for alternative VAR specifications.

Similar to the ARMA model examined in section 3.1, the convention in the literature is to

estimate models with the log level of the real monthly average price of crude oil. The VAR(p)

model with p autoregressive parameters can be expressed as:

(1− a(L))yt = et ∀ t. (15)
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where yt, is a 4x1 vector of the variables, a(L) is the autoregressive parameter matrix of order p,

and et is a 4x1 vector of innovations. The estimated parameters are used to construct recursive

model-based forecasts of the log-real price, ˇ̄rt+h|t which are converted back into real prices in levels

using ˇ̄Rt+h|t = exp
(
ˇ̄rt+h|t

)
.

Unfortunately, it is not possible to apply the BU approach to the oil market VAR as the three

non-price variables are only observed at the monthly frequency. However, one of the practical

advantages of PEPS is that this approach maintains the same model frequency as the forecast

target and is easy to implement. Applying PEPS to the VAR setting only involves replacing the

log level of the monthly average real price of crude oil, r̄t, in the vector yt, with the log level of the

real end-of-month price, rt,n. Again, the estimated parameters of this new specification are used to

construct recursive forecasts of the end-of-month real price of crude oil r̃t+h,n|t, which are converted

back into real prices in levels, R̃t+h,n|t = exp
(
r̃t+h,n|t

)
. Then, the end-of-month forecasts are used

as forecasts of the corresponding monthly average value, ˜̄Rt+h|t = R̃t+h,n|t.

Table 5. Forecasts of the Real Price of Crude Oil with VAR models

Note: Real-time, out-of-sample-forecasts of the real price of crude oil, 1992M1–2021M1. VAR models are estimated
with 12 lags. Brackets report the p-values for serial dependence robust tests of Pesaran and Timmermann (2009)
for the null of no directional accuracy and of Diebold and Mariano (1995) for equal MSFEs relative to the monthly
average no-change forecast. Boldface values indicate statistically significant improvements over the end-of-month
no-change forecast at the five percent significance level.

The estimation follows the real-time forecasts of Baumeister and Kilian (2012). Accordingly, we

estimate models with 12 autoregressive lags, although qualitatively similar results are obtained for

models with 24 lags. Other than changing average prices to end-of-month prices, no other change

is made, and the VAR models are estimated at the monthly frequency.

Table 5 reports the forecast performance of the VAR models for the standard specification,
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as well as the PEPS extension. Unlike Baumeister and Kilian (2012), the models estimated with

average prices only significantly improve upon the monthly average-price no-change forecast in

terms of directional accuracy at horizons of 12 months and beyond. The deterioration in forecast

accuracy in the updated sample is consistent with evidence from other studies (Funk, 2018; Snudden,

2018).

The table also shows that for most cases, the VAR models estimated with PEPS outperform

the VAR models estimated with monthly average prices. This is particularly true for forecast

horizons of up to 6 months. The improvements in forecast accuracy at the one-month horizon are

of the order of 30 percent and, as shown in the online appendix, robust over the second half of

the forecast evaluation sample. These results illustrate that model-based forecasts computed with

monthly average prices are also inefficient in the VAR setting. The use of end-of-month prices in

VARs helps to restore the information loss introduced from averaging, which is particularly relevant

for short-horizon forecasts.

4 Conclusion

We have shown how disaggregated approaches that exploit information from the underlying daily

crude oil prices can be applied to current model-based forecasts methods. Forecasts utilizing infor-

mation in daily prices produce forecast improvements over the monthly average no-change forecast

of up to 45% at the one-month horizon, which is unprecedented in this literature. The magnitude of

the gains decreases with the forecast horizon, yet models estimated with daily prices still improve

upon traditional forecasts as far ahead as the 24-month horizon.

We also directly tested, for the first time, whether model-based forecasts of the monthly real

price of crude oil outperform the traditional random walk forecast, which is the end-of-month no-

change forecast. We find that none of the current forecast practices which are estimated with

monthly average prices outperform the end-of-month no-change forecasts at horizons lower than 6

months. By contrast, some disaggregated approaches displayed significantly lower MSFE ratios or

improved directional accuracy relative to the end-of-period no-change forecast. In economic terms,

the forecast gains relative to this benchmark are reminiscent of the short-horizon predictability

documented for asset prices.

The practical implications of incorporating nominal daily data into model-based forecasts for

real period-average series present an exciting avenue for further exploration. Our study shows that
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even straightforward applications of disaggregated methods result in substantial improvements

over models relying solely on average data, reinforcing the need to utilize the valuable information

contained within daily data for forecasting average series.
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Online Appendix for “Carpe Diem: Can daily oil prices improve

model-based forecasts of the real price of crude oil?”

A1 Real-Time Data

This section describes the construction of the real-time data used in the empirical exercises.

Crude oil prices: Crude-oil price data for WTI and Brent are obtained from the EIA Petroleum

and other liquids. Daily closing prices for WTI and Brent are used to calculate both the monthly

average and end-of-month prices. This data is not subject to revisions and is observed in real time.

As reported by the EIA and the standard in applied work, the monthly average price is the simple

average of daily closing prices. The end-of-month price is the closing price on the last trading day

of the month. The daily series of WTI and Brent prices begin in 1986M1 and 1987M5, respectively.

For models estimated at the daily frequency, the negative WTI price on April 20, 2020, is replaced

by an imputed price for that day using the daily growth rate of Brent prices. The monthly WTI

and Brent price series are backcasted to 1983M4 using the growth rate in the monthly price of the

futures front contract. Monthly prices before 1983M4 are backcasted using the growth rate of the

RAC (imported). None of these backcasting choices are crucial for our results, as our main findings

are robust to estimating models with data starting in 1983 or 1986.

Consumer Price Index: The real-time data for the monthly seasonally adjusted U.S. consumer

price index for all urban consumers is obtained from the Economic Indicators published by the

Council of Economic Advisers from the FRASER database of the Federal Reserve Bank of St. Louis

and from the macroeconomic real-time database of the Federal Reserve Bank of Philadelphia.

Table A1. Descriptive Statistics for the Real Prices of Crude Oil

Monthly Average Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.03 12.31 5.95 60.85

Brent 1973m1 - 2021m1 23.50 10.67 6.08 61.56
West Texas Intermediate 1973m1 - 2021m1 22.63 11.09 5.71 58.34

End of Month Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.07 12.37 5.76 63.64

Brent 1973m1 - 2021m1 22.27 10.23 5.02 64.36
West Texas Intermediate 1973m1 - 2021m1 21.39 10.51 5.13 60.68

Note: All series are represent the level of real prices from 1973M1–2021M5. 2021M5 data vintage. The end-
of-month price for the U.S. refiner acquisition cost (imported) is imputed using the WTI price. The nominal
crude-oil price data is obtained from the Energy Information Administration and the consumer price index is
obtained from the Federal Reserve of Philadelphia.

Oil market variables used in the VAR: The real-time data for the nominal U.S. refiner ac-

1

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm


quisition cost for crude-oil imports, world crude-oil production, U.S. crude-oil inventories, U.S.

petroleum inventories, and OECD petroleum inventories are obtained from the EIA. Real-time

vintages start in 1973M1 and use the vintages of Baumeister and Kilian (2012) from 1991M12 to

2010M12. Vintages from 2011M01 onwards are collected using the same data sources. The updated

real-time data is similar to Garratt et al. (2019), but has the advantage that all historical releases,

and thus data revisions, are included. This real-time database is updated monthly and is publicly

available, along with further documentation, on the author’s website.

We construct real-time vintages of the Real Economic Activity index using (Kilian, 2009)’s

freight rates until 1984M12 and monthly values of the Baltic Dry Index obtained from Bloomberg

thereafter. The index is calculated using the corrected formula of (Kilian, 2019).

Predictor variables used in the LRM: The index of prices of industrial non-oil raw materials

is obtained from the Commodity Research Bureau (BVY00) and is available in real time. The

AMEX Oil Index is obtained from Yahoo Finance (XOI) and is available in real time.

Nowcasting

The CPI series, the global crude oil market variables used in the VARs, and the refiners import

price of crude oil are subject to historical revisions and are reported with a lag. For each vintage,

observations that are missing due to reporting lags are nowcasted following Baumeister and Kilian

(2012):

• Missing observations for the U.S. CPI, and U.S. crude-oil inventories are nowcasted by ex-

tending the series by using the average of the historical growth rate at the respective point

in time.

• Missing observations for the ratio of OECD petroleum inventories to U.S. petroleum inven-

tories are kept constant at the last available value for this ratio.

• Monthly nominal U.S. crude oil imported acquisition cost by refiners are extrapolated with

the growth rate of the monthly average of the nominal WTI price.

2
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A2 Additional Results

A2.1 Bottom-Up Forecasts

This section considers an alternative way to implement the BU approach for the log level of the

daily real price. We impute a daily CPI by assigning the monthly index to the last day of the

month and applying a linear interpolation for the daily measure of CPI, CPIt,i. Once a daily CPI

is calculated, the model can be estimated in daily log real prices and daily forecasts can be averaged

to monthly frequency.1

Specifically, the daily log real price is computed by deflating the daily nominal price by the

imputed daily CPI index, rt,i = ln(Rt,i/CPIt,i). The ARMA(p, q) model is estimated in log-real

levels of the daily prices,

â(L)rt,i = ĉ+ b̂(L)ϵ̂t,i ∀ t , i. (1)

The estimated parameters are used to construct recursive model-based forecasts of the daily

real price r̂t+h,i|t which are converted back into real prices in levels and averaged to the monthly

frequency,

ˆ̄Rt+h|t =
1

n

n∑
i=1

exp(r̂t+h,i|t), ∀ h. (2)

At the one-month horizon, the BU forecasts using the daily real price of crude oil results are

almost identical to the baseline BU results discussed in Section 3.1. At the 3- to 12-month horizons,

the BU approach using daily real prices tends to be slightly worse, especially for directional accu-

racy. At the 24-month horizon, the forecast performance of the BU approach using real daily prices

is found to be slightly more accurate. Our key results remain unchanged. Both BU approaches

outperform the forecasts constructed from monthly average prices at short forecast horizons. Fur-

thermore, the PEPS approach results in superior forecasts compared to all the BU approaches

considered.

1The choice of the imputation procedure has minimal effects on the results. Moreover, the results are almost
identical to avoiding imputation altogether by assigning the same monthly CPI, CPIt, to every daily observation of
month t.
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Table A2. Comparison of Alternative Methods to Construct BU Forecasts

Note: Real-time, out-of-sample forecasts of the real price of WTI crude oil, 1992M1–2021M1. Brackets report the
p-values for serial dependence robust tests of Pesaran and Timmermann (2009) for the null of no directional accuracy
and of Diebold and Mariano (1995) for equal MSFEs relative to the monthly average no-change forecast. Boldface
values indicate statistically significant improvements over the end-of-month no-change forecast at the five percent
significance level.
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A2.2 Exogenous Predictors

This section describes the results of the LRM approach estimated with the Commodity Research

Bureau’s (CRB) index of the price of industrial non-oil raw materials. The predictor variable

Xt is constructed using the monthly average CRB index, p̄t, in monthly growth rates, i.e., Xt =

p̄t/p̄t−1 − 1. The forecasts are constructed using equations 12–14.

Table A3. Real-time Forecasts of the Real Price of Crude Oil Using the CRB Commodity Index

Note: Real-time, out-of-sample forecasts of the real price of crude oil, 1992M1–2021M1. Regression-based direct
forecasts using the CRB Commodity Index index. Brackets report the p-values for serial dependence robust tests
of Pesaran and Timmermann (2009) for the null of no directional accuracy and of Diebold and Mariano (1995) for
equal MSFEs relative to the monthly average no-change forecast. Boldface values indicate statistically significant
improvements over the end-of-month no-change forecast at the five percent significance level.

Table A3 reports the forecast performance of the CRB index for the monthly average real price

of crude oil. The forecasts estimated with monthly average prices can only significantly outperform

the average-price no-change forecast at the one-month horizon for Brent and the RAC and only for

the success ratio at the 5 percent significance level. Moreover, none of the forecasts significantly

outperforms the end-of-month no-change forecast at any horizon.

The later columns show that the disaggregated approaches substantially improve forecast ac-

curacy relative to the standard specification and perform very similarly at all horizons. Forecasts

from these disaggregated approaches exhibit MSFE ratios as low as 0.53 and success ratios as high

as 0.72 at the one-month-ahead prediction. For RAC, the improvements in the MSFE and success

ratio are significant at the 5-percent level relative to the end-of-month no-change forecast at the

one-month horizon. The directional accuracy is also remarkable, with significant gains upon the

end-of-month no-change forecast for the one- to six-month forecast horizons.
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A2.3 Robustness to sample period

The recursively updated MSFE and success ratios for the one-step-ahead forecast of the MIDAS

models are shown in Figure A1. Across the entire sample, the forecast gains from using MIDAS

or PEPS are very similar to those obtained from the end-of-month no-change forecast from the

last observed daily price. However, for WTI and RAC, the models estimated with PEPS slightly

outperform the MIDAS forecasts in terms of directional accuracy, especially towards the later half

of the sample.

Figure A1. Evolution of One-Month Ahead Forecast Evaluation Criteria for Direct Forecasts with
MIDAS and PEPS

Note: One-month-ahead, real-time, out-of-sample forecasts of alternative crude oil price series, 1992M1–2021M1.
MIDAS forecasts computed from Equation 9, PEPS forecasts computed from Equation 10, and direct forecasts using
monthly “Average Prices” computed from Equation 11. “Random Walk” is the end-of-month no-change forecast.
MSFE ratios are expressed relative to the monthly average no-change forecast. The first 60 months are omitted to
reduce starting-point effects.

The recursively estimated MSFE and success ratios for the one-month-ahead forecasts are re-
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ported in Figure A2. The figure shows that the LRM forecasts estimated with monthly average

prices following Chen (2014) do well in the late 2000s and maintain their superiority relative to

the conventional monthly average no-change forecast thereafter. However, for all ending points,

the forecasts constructed with monthly average prices perform worse than the end-of-month no-

change forecasts. In contrast, for both Brent and WTI, the disaggregated approaches maintain

small MSPE gains relative to the end-of-month no-change forecast at the one-month horizon.

Figure A2. Evolution of One-Month-Ahead Forecast Evaluation Criteria for Forecasts Using the
NYSE Arca Oil Index

Note: One-month-ahead, real-time, out-of-sample direct forecasts of the real prices of crude oil using the NYSE Arca
oil index, 1992M1–2021M1. “Random Walk” is the end-of-month no-change forecast. MSFE ratios are expressed
relative to the monthly average no-change forecast. The first 60 months are omitted to reduce starting-point effects.

Figure A3 depicts the evolution of the forecast criteria for the VAR forecasts over time and

shows that the deterioration of the MSFE ratios for the conventional VAR occurs primarily during

the years 2010 to 2014. The figure also shows that the improvements in forecast accuracy of the
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PEPS forecasts at the one-month horizon are on the order of 30 percent and, with a minor exception

in the early 2000s, very robust across the sample period. In fact, between 2008 and 2012, the VAR

models estimated with PEPS substantially improved upon the end-of-month no-change forecast in

terms of MSFE at the one-month horizon. However, Figure A3 shows that the original VAR model

only performed well at the one-month horizon during the financial crisis.

Figure A3. Evolution of One-Month-Ahead Forecast Evaluation Criteria for VAR Models

Note: One-month-ahead, real-time, out-of-sample forecasts of the real prices of crude oil, 1992M1–2021M1. VAR
models are estimated with 12 lags. “Random Walk” is the end-of-month no-change forecast. MSFE ratios are
expressed relative to the monthly average no-change forecast. The first 60 months are omitted to reduce starting-
point effects.
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