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Abstract

Structural innovations estimated from temporally aggregated data (i.e., sums, averages) are
shown to be biased and predictable. Selective sampling is shown to rectify this bias only under
specific conditions. A statistical test for temporal aggregation bias is proposed, which reveals that
over 70 percent of structural innovations can be predicted using lagged daily information. Applying
this test, we find significant mistiming in the shocks to the global crude oil market, and show
that economic agents have already responded to the predictable component. This predictability
and mistiming challenge the reliability of structural economic conclusions drawn from monthly or
quarterly data.
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1 Introduction

Structural economic models are often estimated using temporally aggregated data, such as monthly

or quarterly averages of daily observations. However, temporal aggregation transforms the under-

lying data, making the information set available to econometricians quite different from that of

economic agents (Christiano and Eichenbaum, 1987). Herein, we quantify the extent to which

this discrepancy leads to structural innovations becoming predictable based on past disaggregated

information.

Sufficient conditions are provided, and a method is proposed to quantify the predictability

of structural innovations using lagged daily information. It is shown that shocks will always be

predictable when temporally aggregated data is used in estimation and the underlying data is

persistent. While selective sampling can eliminate this bias, it does so only under specific conditions.

The results indicate that estimating econometric models, such as structural vector autoregressions,

using monthly or quarterly data should be expected to result in mistimed and predictable structural

shocks.

A statistical test for temporal aggregation bias is proposed. Simulations show that using

monthly averages of daily data can lead to up to 74% of structural innovations being predictable

based on lagged information in autoregressive models. This predictability arises from the mechan-

ical loss of information due to aggregation, and it increases with the persistence of the underlying

data.

We apply the test to widely used structural shock estimates for the global crude oil market

(Kilian, 2009; Baumeister and Hamilton, 2019). Our findings indicate that up to half of the variation

in structural innovations is predictable using daily data from the previous months. Additionally, we

identify evidence that some structural innovations follow moving average processes at the monthly

frequency, a pattern consistent with temporal aggregation and indicative of model misspecification

(Working, 1960; Telser, 1967; Marcellino, 1999). Crucially, we show that economic agents have

already responded to the predictable component of these structural innovations.

A key contribution of this paper is to highlight the substantial information loss that occurs

when disaggregated daily data is aggregated into monthly or quarterly frequencies. Previous stud-

ies, which have largely focused on the aggregation of already aggregated data (e.g., monthly to

quarterly), have identified only minor effects (Tiao, 1972; Tiao and Wei, 1976; Wei, 1978; Zellner

and Montmarquette, 1971; Abraham, 1982; Rossana and Seater, 1995; Georgoutsos et al., 1998;
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Athanasopoulos et al., 2011; Marcellino, 1999). However, high degrees of aggregation, such as total

output over days within a quarter or monthly average prices, are commonplace. This daily data,

often derived from financial markets, exhibits high persistence, which is known to result in signif-

icant information loss for forecasts (see, e.g., Tiao, 1972; Amemiya and Wu, 1972) and model fit

(Teles and Sousa, 2017). This paper quantifies the considerable mistiming and predictability of

structural shocks introduced when such persistent daily data is temporally aggregated.

This paper contributes to the broader understanding of temporal aggregation (see surveys of

Marcellino, 1999; Silvestrini and Veredas, 2008). Our quantitative estimates relate to losses in

model fit (e.g., Geweke, 1978; Teles and Sousa, 2017), spurious causality (Wei, 1982; Marcellino,

1999; Breitung and Swanson, 2002), and information loss in forecasting (Amemiya and Wu, 1972;

Kohn, 1982; Lütkepohl, 1986). Although parameter mapping from disaggregated to aggregated

models has been a central focus in prior research, we show that this mapping becomes a poor

approximation when the underlying data is highly persistent. The mapping is more useful for

parameterizing our proposed test and determining the extent of shock mistiming.

These findings call into question the validity of structural innovations estimated from tempo-

rally aggregated data, a common practice in economic applications. They suggest that economic

agents have already observed and responded to the information that economists interpret as new

information.

2 Information Loss and Predictability

2.1 Temporal Aggregation

Consider the econometricians’ information loss from temporal aggregation. Suppose the data gen-

erating process of the daily data on day i in month t is given by is an autoregressive moving average

model, ARMA(p, q), with structural innovation ϵt,i,

a(L)yt,i = b(L)ϵt,i for i = 1, 2, ..., n; t = 1, 2, ..., T. (1)

where L is a lag operator, such that Lyt,i = yt,i−1, b(L) = (1 + α1L + · · · + αqL
q), and a(L) =

(1− ρ1L− · · · − ρpL
p). Here, n is the number of daily price observations within a month, and we

define pt,0 = pt−1,n to transition between months.

This daily data is observed by economic agents and could, for example, represent daily obser-
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vations in financial markets such as commodity prices or interest rates. Now, suppose that the

daily data is ignored, and instead the time series used in estimation is the monthly average data,

yt ≡ 1
n

∑n
i=1 yt,i. This results in two immediate implications.

First, it is well established that temporal aggregation modifies the structure of the time series

(Working, 1960; Telser, 1967). Additional moving average terms are introduced for all ARIMA data

generating processes (Brewer, 1973; Weiss, 1984) and for vector autoregressive models (Marcellino,

1999). Methods have been motivated specifically to capture these moving averages (Lütkepohl,

2006; Foroni et al., 2019). Specifically, ȳt follows an ARMA(p, q∗) process where q∗ = NLI(p +

1 + (q − p − 1)/n) and NLI(·) is the next-lowest integer function.1 Moreover, the coefficient has

been modified such that the limiting model for an ARIMA(p, d, q) as n → ∞ is an IMA(d, d) (Tiao,

1972; Stram and Wei, 1986). For stationary data, in the limit as n approaches infinity ȳt becomes

white noise.

The second effect is that temporal aggregation has resulted in a reduction in information for

econometricians relative to the information set of economic agents. That is, the disaggregated

data always contains more information about the aggregated series than the aggregated series itself

(Tiao, 1972; Tiao and Wei, 1976; Kohn, 1982). The loss in information is established, in theory, to

result in a reduction of forecast accuracy (Amemiya and Wu, 1972; Lütkepohl, 1986). The loss in

information is also known to result in a loss of model fit (for example, Geweke, 1978; Georgoutsos

et al., 1998; Breitung and Swanson, 2002; Teles and Sousa, 2017).

Let us now investigate these two effects on the predictability of the shocks from the model

estimated at the monthly frequency. For arbitrary n, define the aggregation operator ω(L) =

1 + L + L2 + · · · + Ln−1. Then, introduce a polynomial, β(L), which is such that the product

h(L) = β(L)a(L) only contains powers of Ln. This polynomial β(L) always exists, its coefficients

depend on those in a(L), and the degree in L is at most equal to p(n − 1) (Brewer, 1973; Weiss,

1984). That is, h(L) is a polynomial of the form (h0L
0+h1L

n+h2L
2n+ · · ·+hp(n−1)L

p(n−1)). We

then multiply both sides by ω(L) and β(L) and obtain

ω(L)β(L)a(L)yt,i = (1 + · · ·+ Ln−1)(1 + · · ·+ ρn−1Lp(n−1))(1 + · · ·+ αqL
q)ϵt,i

h(L)ȳt = (1 + (1 + ρ1 + α1)L+ · · ·+ αqρ
n−1
p L(p+1)(n−1)+q)ϵt,i. (2)

where ȳt = ω(L)yt,i is the temporal aggregate. Note that Lnϵt,i = ϵt−1,n and largest lag operator on

1The next-lowest integer function, NLI(·), means that the expression in brackets is rounded down to the next-
lowest integer if it is not already an integer.
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ϵt,i is (p+1)(n−1)+q. Equation 2 shows the statistical errors exhibit high-frequency moving average

components. The coefficients on the high-frequency moving average terms are non-constant.

The loss of information occurs when only the aggregate data is used in estimation. Approxi-

mating the high-frequency moving average terms with moving average terms at the lower frequency

incorrectly imposes a constant moving average coefficient on ϵt,i within t for each q∗. This ade-

quately fails to capture the non-constant weights on high-frequency moving average components

introduced from data transformation. Such a model misspecification implies that innovations from

the aggregate model, ut, exhibit covar(ut, L
jyt−1,n) ̸= 0 ∀ j ∈ {0, 1, ..., p(n− 1) + q}. Thus, pre-

dictability of the structural innovations are expected for all ARMA(p, q) representations of the

daily data since it is always the case that (p + 1)(n − 1) + q > n − 1, ∀ n > 1 when p, q > 0.

Further note that when j > n, aggregation places non-linear weights on daily observations from

more than one lag of the temporally aggregated periods. Hence, temporal aggregation bias implies

that the estimates from models relying on temporally aggregated data can be predictable up to

several periods in the past.

2.1.1 A Simple Example

For illustrative purposes, consider the case when the data generating process of the daily data

is given by is an autoregressive model, AR(p), with one autoregressive coefficient ρ (p = 1) and

structural innovation ϵt,i:

(1− ρL)yt,i = ϵt,i for i = 0, 1, 2, ..., n; t = 1, 2, ..., T. (3)

For arbitrary n, the aggregation operator is again given by ω(L) = 1 + L + L2 + · · · + Ln−1, the

polynomial, β(L), is such that the product h(L) = β(L)(1 − ρL) only contains powers of Ln. In

this case, equation 2 simplifies to:

h(L)ȳt = (1 + (1 + ρ)L+ · · ·+ ρn−1L2(n−1))ϵt,i. (4)

Equation 4 shows coefficients of the structural innovations take the form of a non-linear polynomial

and the largest lag operator on ϵt,i is 2(n− 1).

For illustration, Figure 1 graphs the values of the coefficients on lagged daily structural inno-

vations for alternative values of ρ for monthly average data, with n = 21. Daily lags from 0 to

20 represent contemporaneous innovations within the month t, and lags from 21 to 41 represent
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Figure 1. Coefficients on Lagged Daily Values are Not Constant

Notes: Coefficients on lagged daily values for alternative values of ρ of an AR(1) model with temporal aggregation
to monthly data, n = 21.

innovations from the previous month. Figure 1 clarifies that the monthly average data in time t

disproportionately reflects structural innovations at the beginning of the month t and at the end

of the previous month, t − 1. In fact, the aggregated data approaches symmetric constitution of

innovations from both months as ρ → 1.

The implication, is that the inference on structural innovations depends on the occurrence of

daily shocks within the month. For example, consider two innovations from the AR(1) model with

ρ = 0.98, where one occurs on the first day of the month and the other occurs on the last day of the

month, as shown in Figure 2. When the shock occurs on the last day of the month, the information

is primarily reflected in the next month’s average. Despite the daily information arriving in the

previous month, the monthly average reflects less than 5 percent of the shock. Empirical use of

only the aggregated data will incorrectly conclude that the innovation occurred in the succeeding

month. In contrast, a shock that occurs on the first day of the month will be reflected in the current

month’s average.

The loss of information arises when only the monthly data is used and the sequence of daily

moving average terms by approximated with an ARMA(1,1) at the monthly frequency:

ȳt = ρnȳt−1 + (1 + (1 + ρ)L+ · · ·+ ρn−1L2(n−1))ϵt,i

≈ ρ̃ȳt−1 + ut + α̃ut−1. (5)
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Figure 2. Information Loss Depends on the Day in the Month the Shock Occurs

Notes: Impulse response from a daily AR(1) model with ρ− 0.98 with monthly average data, n = 21.

where ut is the estimate of the monthly structural innovation. The estimation of a monthly moving

average coefficient α̃ places a constant coefficient on the daily innovations from the previous month.

This turns out to be a poor approximation for persistent data, as it fails to capture the non-

constant weights imposed from the data transformation and results in substantial information loss.

The difference between a common coefficient and the true coefficient is increasing in the degree of

persistence. The misspecification implies that innovations from the aggregate model, ut, exhibit

covar(ut, L
jyt−1,n) ̸= 0 ∀ j ∈ {0, 1, ..., (n− 1)}. Thus, predictability of the monthly structural

innovations are expected using the daily information from the previous month for all ρ > 0.

2.2 Selective Sampling

An alternative data sampling strategy is selective sampling (point-in-time sampling). For example,

time series of end-of-period data, yt,n, are the convention for stock variables (rather than flow

variables), for calculating returns to financial assets, and are commonly reported for interest rates

and bilateral exchange rates.

Unfortunately, selective sampling is similar to temporal aggregation in that it can modify the

structure of the data and result in information loss. Specifically, selective sampling, like temporal

aggregation, is known to modify the structure of data for ARIMA (Wei, 1981; Weiss, 1984), and

VARIMA processes (Marcellino, 1999) and can result in information loss when forecasting Kohn
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(1982). Only in special cases can selective sampling avoid information loss.

Consider the case of the ARMA(p, q) model under selective sampling. The aggregation operator

is now ω(L) = 1. Then, introduce a polynomial, β(L), which is such that the product h(L) =

β(L)a(L) only contains powers of Ln. This polynomial β(L) always exists and degree in L is again

at most equal to p(n− 1) (Brewer, 1973; Wei, 1981; Weiss, 1984). Following the same steps as for

equation 2 we obtain

ω(L)β(L)a(L)yt,i = (1 + · · ·+ ρn−1Lp(n−1))(1 + · · ·+ αqL
q)ϵt,i

h(L)yt,n = (1 + (ρ1 + α1)L+ · · ·+ αqρ
n−1
p Lp(n−1)+q)ϵt,i. (6)

Thus, yt,n is said to be approximated by an ARMA(p, r) process where r = NLI(p − (q − p)/n)

(see, Wei, 1981; Weiss, 1984). Equation 6 shows that the coefficients of the structural innovations

again take the form of a non-linear polynomial.

Thus, selective sampling still exhibits temporal bias for ARMA(p, q) representations with, (p−

1)(n − 1) + q > n − 1. For example, for an AR(p) or MA(q) model, temporal bias is only present

when p ≥ 2 or q > n− 1, respectively. Thus, selective sampling can reduce temporal bias, but can

only eliminate temporal bias if the daily DGP exhibits p ≤ 1 and low values of q relative to n.

2.3 Testing For Temporal Aggregation Bias

A method is now proposed to quantify the information loss from temporal aggregation using direct

forecasts constructed from lagged daily observations. As shown in equation 2, the covar(ut, L
jyt−1,n) ̸=

0 ∀ j ∈ {0, 1, ..., p(n− 1) + q} such that a direct forecast can be constructed using daily values from

the previous periods, which contains all relevant information for future period average observations.

Thus, it is proposed that this information loss be quantified by constructing a direct forecast of

the structural innovations on J = p(n − 1) + q lagged differences between the daily and monthly

average observations, for stationary, defined as dt,i = yt,i − ȳt. The test takes the following form:

ut =
J∑

j=0

βjdt−1,n−j + νt. (7)

The test quantifies the extent to which structural innovations constructed from temporally ag-

gregated data, ut, are predictable to economic agents by the end of the previous month, Et,n[ut+1] =

0. Note that this differs from the expectations of the econometrician who has chosen to limit infor-
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mation to averaged data, Ēt[ut+1] = 0. Rejection of the latter assumption is associated with model

misspecification, but is limited to the information set of the averaged data.

The test is a one-step-ahead direct forecast and has a MIxed DAta Sampling (MIDAS) speci-

fication (see for example, Ghysels et al., 2007; Andreou et al., 2010; Foroni and Marcellino, 2016;

Ghysels, 2016; Andreou et al., 2010, among others). Specifically, this is an unrestricted MIDAS

(UMIDAS) regression, and for small J , the parameters can be efficiently estimated with ordinary

least squares (OLS) (Foroni et al., 2015, 2019). A simulation analysis of different MIDAS estimators

and power analysis is provided in the next section.

With observable daily data, the test can be parameterized by first determining the data gen-

erating process of the daily data. For example, the best fit of an ARMA(p, q) model on the daily

data can be used to determine p, and q, and then J is given by the sufficient conditions. When

daily data is not available, lag selection can follow standard practice and use hypothesis testing or

by estimating restricted MIDAS parameter profiles.

3 Quantifying Predictability

Simulation experiments are now examined to quantify the information loss from temporal aggre-

gation.

3.1 ARMA

Daily data, yt,i is constructed assuming the AR(1) model of equation 13, ϵt,i ∼ N(0, 1), and

aggregated, ȳt to weekly, monthly, or quarterly frequency, with n = 5, 21, or 62, respectively.

Then, the ARMA(1,1) model is estimated using aggregated data, equation 5, and equation 7 is

estimated on the structural innovations ut. Simulations use 40 years worth of daily data, consistent

with applications where daily data has been available since the early-1980s, and, in addition, burn

the first 500 daily observations. These baseline simulations are consistent with the applications in

section 4.

Table 1 reports the mean and standard deviation of the adjusted R2 from equation 7 using 5000

simulations. The innovations are expected, rejecting Et,n[ut+1] = 0. The ability to predict shocks

increases in the persistence of the daily data. When ρ > 0.95, daily information available in the

previous period can explain over one third of the structural innovations for monthly and quarterly

data. For highly persistent daily data, ρ > 0.995, over 37 percent of the structural innovations are
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Table 1. Structural Innovations are Highly Predictable When the Data is Temporally Aggregated

Agg. Model ARMA(1,1) ARMA(1,0)
ρ / Frequency Weekly Monthly Quarterly Weekly Monthly Quarterly

1.00 0.273 0.388 0.410 0.353 0.463 0.483
(0.017) (0.035) (0.079) (0.016) (0.032) (0.070)

0.995 0.271 0.375 0.370 0.349 0.444 0.429
(0.017) (0.035) (0.081) (0.016) (0.032) (0.074)

0.99 0.268 0.362 0.333 0.344 0.426 0.379
(0.017) (0.035) (0.082) (0.016) (0.033) (0.078)

0.95 0.249 0.271 0.145 0.311 0.298 0.149
(0.016) (0.034) (0.090) (0.016) (0.034) (0.090)

0.90 0.225 0.182 0.068 0.271 0.190 0.069
(0.016) (0.032) (0.090) (0.016) (0.032) (0.090)

0.75 0.151 0.061 0.022 0.166 0.062 0.022
(0.014) (0.024) (0.089) (0.015) (0.024) (0.089)

0.50 0.056 0.016 0.007 0.057 0.016 0.007
(0.010) (0.017) (0.089) (0.010) (0.017) (0.089)

0.25 0.011 0.003 0.003 0.011 0.003 0.003
(0.005) (0.014) (0.089) (0.005) (0.014) (0.089)

0.00 0.000 0.000 0.002 0.000 0.000 0.002
(0.001) (0.013) (0.088) (0.001) (0.013) (0.089)

Notes: Mean R2-adjusted values from 5000 Monte Carlo simulations of equation 7 using UMIDAS estimated with
OLS and J = n−1. 40 years worth of daily data simulated with an AR(1) with alternative autocorrelation coefficients
ρ. “Agg. Model” refers to the model, equation 5, estimated on aggregated data to obtain the residuals, ut. Standard
deviations in parentheses.

expected for monthly and quarterly data, respectively.

Moreover, the test correctly reflects that the shocks cannot be predicted in the previous month

when ρ = 0. This arises from the use of the R2-adjusted measure, which is suitable since the test

has a UMIDAS form. Thus, the empirical evidence indicates that there is no outfitting.2

The last three columns consider the case where the moving average term is omitted, and the

aggregate model is estimated with an AR(1). When the moving average term is ignored, the

test predicts slightly more of the structural shocks. This quantifies that not approximating the

high-frequency moving average terms with an aggregate moving average term slightly exacerbates

predictability. However, the primary driver of predictability is the mechanical loss of information

introduced by aggregation.

Now consider the information loss from selective sampling and temporal aggregation, and we

also consider when the daily data is generated with an AR(2) model. For selective sampling, the

aggregate model is estimated with end-of-month data. The AR(2) model is assumed to take the

2Note that since the form of the error is known, approximations using restricted parameter profiles are not needed.
Use of restricted parameter profiles is only found to reduce forecast precision and are not reported for brevity.
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following form,

(1− ρL− γL2)yt,i = ϵt,i for i = 0, 1, 2, ..., n; t = 0, 1, 2, ..., T. (8)

where γ is the second autoregressive coefficient. We consider two different daily AR(2) data gen-

erating processes (DGPs), a non-persistent case with γ = (1 − ρ)0.5, and a persistent case with

γ = (1 − ρ)0.99. For illustration, the daily data aggregated to the monthly frequency in the sim-

ulations. The low-frequency model used to obtain the shocks, ut, is assumed to use the aggregate

approximation and includes the correct number of lower frequency moving average terms.

Table 2. Even Selectively Sampled Data can Result in Highly Predictable Structural Innovations

ρ / Sampling AR(1) AR(2) Persistent AR(2)
EoM Average EoM Average EoM Average

1.00 0.000 0.388 0.000 0.740 0.000 0.740
(0.013) (0.035) (0.019) (0.019) (0.019) (0.019)

0.995 0.000 0.375 0.000 0.708 0.000 0.739
(0.013) (0.035) (0.019) (0.021) (0.019) (0.019)

0.99 0.000 0.362 -0.002 0.677 0.000 0.738
(0.013) (0.035) (0.019) (0.023) (0.019) (0.019)

0.95 -0.001 0.271 -0.003 0.486 0.000 0.730
(0.013) (0.034) (0.019) (0.030) (0.019) (0.020)

0.90 -0.001 0.182 -0.003 0.337 0.000 0.720
(0.013) (0.032) (0.018) (0.033) (0.019) (0.020)

0.75 -0.001 0.061 -0.003 0.156 0.002 0.695
(0.013) (0.024) (0.018) (0.032) (0.019) (0.022)

0.50 -0.002 0.016 -0.003 0.071 0.013 0.665
(0.013) (0.017) (0.018) (0.028) (0.021) (0.024)

0.25 -0.002 0.003 -0.003 0.042 0.043 0.646
(0.013) (0.014) (0.018) (0.025) (0.026) (0.025)

0.00 -0.002 0.000 -0.004 0.028 0.390 0.634
(0.013) (0.013) (0.019) (0.024) (0.036) (0.025)

Notes: MeanR2-adjusted values from 5000 Monte Carlo simulations of equation 7 using average or selective sampling.
40 years worth of daily data, using an AR(1), AR(2) with γ = (1−ρ)0.5, or a persistent AR(2) with γ = (1−ρ)0.99
and the first autocorrelation coefficient is given by ρ. Estimates of the low-frequency model used to obtain the
shocks, ut, is assumed to be correctly specified. Standard deviations in parentheses.

The mean and standard deviation of the adjusted R2 using the test of equation 7 is reported in

Table 2. When the daily data is an AR(1) and the data is selectively sampled, the test shows no

evidence of predictability for any value of ρ, consistent with the sufficient conditions. Only when

the AR(2) model has a sizable value for the second autoregressive term, γ, is there found to be

predictability. For example, when ρ = 0 and γ = 0.99, 39 percent of the structural shocks are
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predictable. This is similar in magnitude to the predictability found for the AR(1) model with

averaging, and shows that temporal bias could still be present with selective sampling. Moreover,

when the data is temporally aggregated, up to 74 percent of the shocks are predictable when the

daily DGP is an AR(2) model. Together, these finding show that up to the majority share of

structural innovations can be predicted using lagged high-frequency information, and that while

selective sampling can reduce predictability, it can only eliminate temporal aggregation bias in

special cases.

3.2 Structural Vector Autoregressions (SVAR)

The above analysis showed that the sufficient conditions and parameterization of the tests comes

from the high-frequency moving average structure derived by Brewer (1973). This was extended

to vector autoregressive moving average models (VARMA) for selectively sampled and temporally

aggregated data by Marcellino (1999).3 Marcet (1991) considered the case where the variables in

the VAR have different sampling methods. For temporally sampled data, the largest lag operator on

the high-frequency innovations remains the same, but the test includes disaggregated observations

for each variable. We use these conditions to quantify the mistiming of the structural shocks arising

from the aggregation of daily data.

Consider daily data for two variables, y1t,i and y2t,i, generated from a structural vector au-

toregressive models (SVAR). The SVAR has a recursive ordering such that the structural shock to

equation 1, ϵ1t,i enters equation 2 with coefficient η2:

y1t,i = ρ11y1t,i−1 + ρ12y2t,i−1 + ϵ1t,i

y2t,i = ρ21y1t,i−1 + ρ22y2t,i−1 + η2ϵ1t,i + ϵ2t,i

We simulate 40 years of daily data and consider three sampling cases. The first case sam-

ples both variables using monthly averages. The second case has the first variable sampled using

monthly averages and the second with end-of-period sampling, while the third case reverses this

sampling order. Then, the SVAR is estimated at the monthly frequency, the structural shocks are

extracted, and equation 7 is estimated on the structural innovations. We consider four alternative

parameterizations of the SVAR, shown in Table 3. For all cases, the first variable has a high degree

of autoregressive persistence with ρ11 = 0.99 but the second variable has a low degree of autore-

3See also Lütkepohl (1987) and Silvestrini and Veredas (2008)
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Table 3. Highly Predictable SVAR Innovations

Parameters Ave. y1t, Ave. y2t Ave. y1t, Point y2t Point y1t, Ave. y2t
ρ11 ρ22 ρ12 ρ21 η2 ϵ1 ϵ2 ϵ1 ϵ2 ϵ1 ϵ2
0.99 0.45 0.00 0.50 0.50 0.368 0.035 0.149 0.033 -0.002 -0.001

(0.035) (0.023) (0.034) (0.024) (0.019) (0.019)
0.99 0.45 0.00 -0.50 0.50 0.217 0.112 0.308 0.057 -0.002 0.001

(0.034) (0.027) (0.038) (0.025) (0.019) (0.020)
0.99 0.45 0.05 0.10 0.10 0.459 0.010 0.412 0.006 -0.001 0.010

(0.033) (0.021) (0.035) (0.020) (0.019) (0.021)
0.99 0.45 0.50 -0.50 0.10 0.050 0.124 0.021 0.005 -0.002 0.030

(0.026) (0.032) (0.023) (0.020) (0.020) (0.024)

Notes: Mean R2-adjusted with standard deviations in parentheses for the structural shocks, ϵ1 and ϵ2, from the
two-variable SVAR. Daily data for y1t,i and y2t,i are sampled using monthly averages (Ave.) or end-of-month point-
in-time sampling (Point). Results based on 5000 Monte Carlo simulations with 40 years of daily data.

gressive persistence, ρ22 = 0.45. This choice is illustrative, but higher autoregressive persistence in

the second equation would only further increase the degree of predictability for the second shock.

Let’s first consider the case where both variables are sampled using monthly averages. In the

first parameterization, the second variable is influenced by both the shock and the lagged value of

y1 at the daily frequency, but not vice versa. The R2 of the structural shock from the first equation

is similar in magnitude to the AR(1) case, 0.368. The second variable has less autoregressive

persistence, so the R2 of the structural shock is only 0.035. In contrast, the second parameterization

shows the case where y2t responds negatively to y1t−1 at the daily frequency, and the R2 for the

structural shocks changed to 0.217 and 0.112, respectively. The predictability of the first shock

is reduced because one-sided directional causality becomes bidirectional due to aggregation (Wei,

1982; Breitung and Swanson, 2002).

The third and fourth parameterizations introduce feedback from the second variable to the first

at the daily frequency. When this feedback increases persistence in the first equation, such as with

p12 = 0.05, the R2 rises to 0.459. Conversely, when that feedback reduces persistence in the first

variable, predictability declines. In the last parameterization, the second equation has a negative

lagged response to y1t, d p21 = −0.5. In effect, the second variable provides information from

recent realizations of ϵ1t that was lost in the aggregation of the first variable. This information

is attributed to the second variable, lowering the predictability of the structural shock in the first

equation. These results highlight the known problem of spurious relationships in multivariate

systems when a right-hand-side variable contains information lost from aggregating the left-hand-

side variable.
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Predictability of the structural shocks persists even when the sampling methods differ between

variables in the VAR. When the first variable is aggregated, and the second is point sampled, the

predictability of the first variable generally decreases-except in one case. This reduction occurs

because more information from recent shocks to ϵ1t is preserved in the second equation and is

attributed to the lagged second variable in the first equation. The second parameterization is the

only case where the predictability of the first shock increases due to ρ21 being negative, which fails

to preserve information from recent ϵ1t shocks. In the final sampling case, where the first variable

is point sampled, and the second is averaged but exhibits low persistence, neither shock shows

predictability since the number of lagged autoregressive coefficients is less than two.

The multivariate analysis demonstrates that spurious relationships between variables and the

predictability of structural shocks from temporally aggregated data are two sides of the same

coin. Spurious relationships arise because a variable retains information lost through temporal

aggregation of the other variable. Consequently, estimated relationships between variables may

disappear when the information loss from temporal aggregation is addressed.

3.3 Power Analysis

As J becomes large, or with small sample sizes, approximations of the MIDAS structure using

restricted parameter profiles may be more efficient than using UMIDAS (Foroni et al., 2015). The

appropriateness of restrictions on the parameters for large J is effectively an empirical question

and is now examined.

Table 4 reports the share of times that the test rejects the null hypothesis of no predictive

power at the 0.05 percent level using 5000 Monte Carlo simulations of daily data generated with

an AR(1). The test is estimated with OLS and J = n− 1 following equation 7. The model of the

averaged data is correctly specified and estimated using an ARMA(1,1). Power is considered for

hypothesis testing using t-tests with restricted parameters of J = 1, and F-tests when J = n − 1,

and DM-tests (Diebold and Mariano, 1995) that use Newey and West (1987) standard errors and

compare against the standard normal.

The results suggest that with 40 years of data, an F-test for predictability has near perfect

power for ρ ≥ 0.5 for weekly data, and ρ ≥ 0.75 for monthly data. In contrast, power is smaller

for quarterly data and requires ρ > 0.95. Results are very similar with only twenty years of data.

When there is no predictability, ρ = 0, the F-test correctly reflects the 5 percent significance level.

A restricted parameter profile of J = 1 is sufficient to establish predictability but would not be
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Table 4. Power Analysis, Weekly, Monthly, and Quarterly Frequency

F-test (J = n− 1) t-test (J = 1) DM (J = n− 1) DM (J = 1)
ρ W M Q W M Q W M Q W M Q

20 Years
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.995 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.95 1.00 1.00 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
0.90 1.00 1.00 0.18 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.56
0.75 1.00 0.59 0.08 1.00 0.99 0.56 1.00 1.00 1.00 1.00 0.74 0.10
0.50 1.00 0.14 0.06 1.00 0.62 0.23 1.00 0.98 1.00 1.00 0.11 0.02
0.25 0.78 0.07 0.05 0.96 0.21 0.11 0.71 0.95 1.00 0.54 0.01 0.01
0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.95 1.00 0.00 0.00 0.00

40 Years
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.995 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.95 1.00 1.00 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
0.90 1.00 1.00 0.19 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.56
0.75 1.00 0.95 0.08 1.00 1.00 0.57 1.00 1.00 1.00 1.00 0.99 0.10
0.50 1.00 0.29 0.06 1.00 0.86 0.24 1.00 0.99 1.00 1.00 0.31 0.02
0.25 0.98 0.08 0.05 1.00 0.34 0.10 0.97 0.97 1.00 0.93 0.02 0.00
0.00 0.06 0.05 0.05 0.04 0.05 0.05 0.04 0.95 1.00 0.00 0.00 0.00

Notes: Tested at the 0.05 significance level using 5000 Monte Carlo simulations of equation 7 using UMIDAS
estimates with OLS and J = N − 1 or J = 1. Daily data generated with AR(1). DM refers to the Diebold and
Mariano (1995) test. The null is true for values of ρ > 0, and false for ρ = 0. W , M , and Q refer to weekly, monthly,
and quarterly sampling, respectively.

expected to capture the full extent of predictability in some cases. The middle three rows of Table

4 show that J = 1 has more power, especially at the quarterly frequency, and when the sample

is small. Interestingly, J = 1 is also found to explain a considerable share of the shock at the

weekly and monthly frequency, see appendix. The results suggest that UMIDAS with F-tests and

J = n − 1 is sufficient for weekly and monthly data, whereas t-tests and J = 1 are desirable for

quarterly frequency and when the sample is small.

In contrast, significance of predictability using the DM-test has less power in all cases and results

in substantial type one error for monthly and quarterly data under the alternative (ρ = 0) with

J = n− 1. The type one error for monthly and quarterly data is consistent with existing evidence

of over-rejection when the forecast and target are persistent (for example, Khalaf and Saunders,

2017; Engel and Wu, 2023). Moreover, there is substantial type two error when ρ = 0 and J ̸= 1.

This evidence strongly suggests that testing for predictability using Diebold and Mariano (1995) is

undesirable for direct forecasts compared to standard t- and F-test, consistent with existing findings
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(for a summary, see Diebold, 2015).

4 Application: Shocks to the Global Market for Crude Oil

We apply the proposed test to commonly used estimates of structural shocks to the global market for

crude oil (Kilian, 2009; Baumeister and Hamilton, 2019) and explore if they are unexpected. This

application is warranted, since the structural vector autoregressive (SVAR) models of Kilian (2009)

and Baumeister and Hamilton (2019) are very popular and employ temporally aggregated monthly

data. Specifically, the U.S. refiners acquisition cost of imported crude oil used by Kilian (2009) is a

monthly average, and the price of West Texas Intermediate (WTI) crude oil used by Baumeister and

Hamilton (2019) is a monthly average of daily closing prices. Global crude oil production used for

both studies is a monthly sum. The real economic activity index (Kilian, 2009) is a transformation

of a monthly average of daily shipping rates, and world industrial production used by Baumeister

and Hamilton (2019) is a monthly sum. The only variable which is not temporally aggregated is the

proxy for crude oil inventories in Baumeister and Hamilton (2019) which are end-of-month stocks.

We obtain the structural shocks of Kilian (2009) by conducting an exact replication of the

recursively identified structural vector autoregressive (SVAR) model.4 The structural shocks of

Baumeister and Hamilton (2019) are provided on the authors’ website.5 Both models include

structural shocks to aggregate demand, crude oil supply, oil-specific demand, and Baumeister and

Hamilton (2019) has an additional shock to precautionary (physical inventory) demand á la Kilian

and Murphy (2014).

Daily data is available for WTI which underlies the oil-specific demand shocks and for BDI which

underlies the aggregate demand shock of Kilian (2009). Let p̄t be the monthly average price of WTI,

and pt,n be the corresponding end-of-month price. The growth rate in daily versus monthly average

prices is dpt,i = ln(pt,i)− ln(p̄t), where ln(·) is the natural logarithm. Similarly, let the growth rate

in the daily versus monthly average Baltic Dry Index (BDI) be ddt,i = ln(bdit,i) − ln( ¯bdit). Notice

that nominal values are used, since the price deflator cancels out. We construct direct forecasts for

4See Kilian (2009) for details. Replication codes are available on the American Economic Association website,
and data is provided by the U.S. Energy Information Administration (EIA) and the Index of Global Real Economic
Activity from FRED, the Federal Reserve Bank of Dallas.

5Downloaded January 2023.
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each shock series from Kilian (2009) and Baumeister and Hamilton (2019), ushkt , by estimating:

ushkt =
J∑

j=0

βp
j d

p
t−1,n−j +

K∑
k=0

βd
kd

d
t−1,n−k + νshkt . (9)

Since the daily data is not available for the other shocks, lags of daily observations for both oil

prices and the BDI are used. Using the daily series, AIC criteria selects a AR(1) model for both

the daily BDI and oil prices, so the test is implemented with K = 20 and J = 21 - the average

observations within each month respectively for each series.

As recommended by the power analysis, the test for predictability is implemented using UMI-

DAS and F-tests with J = n− 1 for monthly data. However, restricted MIDAS parameter profiles

are also considered using J = 1 with t-tests, as well as restricted MIDAS profiles using the Almon

lag polynomial, and generalized exponential specifications, (see for example, Ghysels et al., 2007).

Significance of predictability for restricted MIDAS specifications are tested following Diebold and

Mariano (1995).

Table 5. Shocks to the Global Market for Crude Oil are Predictable

Kilian (2009) Baumeister & Hamilton (2019)
Estimate Method Aggregate Oil Oil Aggregate Oil Oil Inventory

Demand Demand Supply Demand Demand Supply Demand

R2 UMIDAS 0.505 0.307 0.083 0.182 0.199 0.198 0.024
J = N − 1 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.045)
MIDAS 0.376 0.105 0.071 0.100 0.157 0.047 0.043
Almon (0.000) (0.001) (0.207) (0.215) (0.001) (0.011) (0.009)
MIDAS 0.456 0.242 0.015 0.107 0.184 0.151 0.046
Expon. (0.000) (0.000) (0.207) (0.222) (0.000) (0.018) (0.033)

β̂p UMIDAS - 0.110 -0.019 0.028 0.309 -0.085 0.017
J = 1 - (0.000) (0.010) (0.000) (0.000) (0.000) (0.083)

β̂d 0.063 - - 0.006 - - -
(0.000) - - (0.073) - - -

R2 0.365 0.272 0.012 0.499 0.182 0.107 0.004
(0.000) (0.000) (0.014) (0.000) (0.000) (0.000) (0.083)

Notes: Estimates of equation 9, 1983M4–2022M6, using UMIDAS, Almon lag polynomial (Almon), and generalized
exponential (Expon.). Adjusted R2 used for UMIDAS, unadjusted for MIDAS. Robust p-values in parentheses using
F-tests for UMIDAS, t-tests for J=1, and Diebold and Mariano (1995) for MIDAS. βd and βp are the coefficient
values for UMIDAS with J=1 for BDI and WTI, respectively.

The adjusted R2 for the alternative measures of predictability using UMIDAS are presented in

Table 5. With J = 1, the coefficient on the lagged end-of-month values, β0, are significant at the

5 percent level in all cases, except for the inventory demand shock which also happens to be the

only selected sampled data. This alone is sufficient to establish that the structural shocks reflect
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innovations from the previous months.

Quite a large share of the shocks are predictable. For UMIDAS, with J = n − 1, 50.5 percent

of the aggregate demand shock of Kilian (2009) is predictable. We reject the null hypothesis of

no predictability, in sample, at the 5 percent level, for every shock. Restricted MIDAS parameter

profiles corroborate evidence of predictability. The results indicate that all the shocks are expected,

and we reject the null hypothesis of Et,n[u
shk
t+1] = 0. As such, the estimates of structural shocks to

the global market for crude oil do not wholly represent new information.

To confirm that predictability arises entirely due to the loss of information from temporal

aggregation, we also test for model misspecification. Specifically, for each shock series, we test for

a moving average by estimating:

ushkt = αũshkt−1 + ũshkt . (10)

Table 6. Some Structural Shocks Exhibit Moving Average Processes

Estimate Method Kilian (2009) Baumeister & Hamilton (2019)
Aggregate Oil Oil Aggregate Oil Oil Inventory
Demand Demand Supply Demand Demand Supply Demand

α̂ MA(1) 0.006 -0.002 -0.004 -0.013 0.038 0.089 -0.089
(0.848) (0.932) (0.906) (0.566) (0.322) (0.016) (0.045)

Notes: Estimates of the moving average coefficient α from equation 10, 1983M4–2022M6. Robust p-values in paren-
theses using t-tests.

Table 6 reports the estimates of the moving average coefficients in the structural shock se-

ries. Significant moving average coefficients are found for the oil supply and inventory demand

of Baumeister and Hamilton (2019), so for these cases, we can even reject the null hypothesis of

Ēt[u
shk
t ] = 0. The results indicate model misspecification, potentially arising from the introduction

of moving average terms through temporal aggregation.

5 Have Agents Already Responded to Predictable information?

Predictable innovations suggest that the shock estimates do not wholly represent surprise innova-

tions, as they partly reflect information from the previous period. If shocks are expected, then

agents may have already partly responded to the information in the previous period, resulting in

temporal aggregation bias in inference (Christiano and Eichenbaum, 1987). It is especially plausible

that financial markets have already responded to the daily information from the previous month

given that energy market have been shown to quickly respond to economic news (i.e. Elder et al.,
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2013).

Fortunately, the test of aggregation bias provides a parametric estimate to deconstruct the

original shock into the new information and the expected component. Specifically, an estimate

of the unexpected component is given by the estimates of the residuals, ν̂shkt , from equation 9.

Moreover, fitted values using the estimated coefficients reflect the explained component. For the

oil-specific and aggregate demand shocks, the share of the structural innovation that is expected in

the previous period is given by:

êshkt−1 =
J∑

j=0

β̂p
j d

p
t−1,n−j

K∑
k=0

β̂d
kd

d
t−1,n−j . (11)

We can test whether agents have already responded to the expected component by estimating

the effects of the shocks in the previous period. We explore the dynamic effects of the expected

component by constructing IRFs using local projections (Jordà, 2005). The IRFs control for the

unexpected component in the current period νshkt , and examine the response of the real price of

crude oil to the expected component of the shock, êshkt .

Figure 3. Markets Have Responded to Expected Component of Shocks in the Previous Month

Notes: Impulse response functions for the real price of crude oil constructed using local projections
as per equation 12, 1983M6–2022M6. 90 percent confidence intervals displayed
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Specifically, the IRFs for the expected component of the shock are estimated as follows:

yt+h,n = βu
h ν̂

shk
t + βe

hê
shk
t + β(L)Yt + et+h, ∀h (12)

where βe
h is used to construct the point estimates of the IRFs, yt+h,n is the end-of-period real WTI

price of crude oil, and Yt controls for lagged values of the shocks and variables’ in the SVAR model.

Twelve lags of β(L) are used, and confidence intervals use Newey and West (1987) standard errors.

The estimates of the IRFs for the expected component of the aggregate demand shock and the

oil-specific demand shock of Kilian (2009) and Baumeister and Hamilton (2019) are presented in

Figure 3. Even controlling for the effect of the unexpected shocks, the expected component of the

shock has a significant effect on the real price of crude oil in the previous month. The response is

very persistent and shows that the real price of crude oil had already responded to the share of the

shock that was already realized in the previous period.

6 Discussion

The evidence of predictability in structural innovations presented herein is concerning and puts

into question the conclusions derived using temporally aggregated data in shock identification. Use

of such data, either by choice or limitation, results in information loss that implies that economic

agents are likely to have already observed, and responded, to what an economist estimates as a

structural innovation. This is especially plausible considering that economic agents, such those in

financial markets, observe daily market data and news announcements about supply or demand

changes.

If the daily data exists, e.g., daily BDI and crude oil prices, the most straightforward approach

to correct for temporal aggregation bias is to avoid aggregation altogether and employ bottom-up

approaches which ex-post average daily responses to the desired temporal frequency (Telser, 1967;

Tiao, 1972). Alternatively, selective sampling can correct for temporal aggregation bias under the

conditions set out in this paper. Finally, techniques that use high-frequency information, such as

mixed frequency structural modelling, (Foroni and Marcellino, 2014, 2016; Ghysels, 2016) can also

be of use. Critically, the onus should be placed on economists to test the assumption that structural

innovations are unexpected.
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A Online Appendix

A1 Additional Simulation Analysis

A1.1 Sample Size

The investigation of Section 2.1 is extended to examine the effect of sample size on predictabil-

ity. Again, we assume the daily DGP is an AR(1) and the structural innovations are collected

from the low-frequency model that is corrected specified for period averaging and estimated as an

ARMA(1,1). The central estimates for R2-adjusted of equation 7 are reported in Table A1.

Table A1. The Effect of Sample Size on Predictability

Weekly Monthly Quarterly
ρ / Years 10 40 500 10 40 500 20 40 500

1.00 0.272 0.273 0.274 0.383 0.388 0.390 0.402 0.410 0.417
(0.033) (0.017) (0.005) (0.078) (0.035) (0.010) (0.201) (0.079) (0.017)

0.995 0.270 0.271 0.271 0.369 0.375 0.377 0.361 0.370 0.377
(0.033) (0.017) (0.005) (0.078) (0.035) (0.010) (0.212) (0.081) (0.017)

0.99 0.268 0.268 0.269 0.356 0.362 0.364 0.324 0.333 0.340
(0.033) (0.017) (0.005) (0.079) (0.035) (0.010) (0.223) (0.082) (0.017)

0.95 0.248 0.249 0.250 0.266 0.271 0.272 0.136 0.145 0.149
(0.032) (0.016) (0.005) (0.079) (0.034) (0.010) (0.270) (0.090) (0.015)

0.90 0.224 0.225 0.225 0.178 0.182 0.183 0.062 0.068 0.069
(0.032) (0.016) (0.004) (0.078) (0.032) (0.009) (0.286) (0.090) (0.012)

0.75 0.150 0.151 0.151 0.060 0.061 0.062 0.018 0.022 0.021
(0.029) (0.014) (0.004) (0.068) (0.024) (0.006) (0.294) (0.089) (0.008)

0.50 0.055 0.056 0.056 0.015 0.016 0.016 0.005 0.007 0.005
(0.020) (0.010) (0.003) (0.061) (0.017) (0.003) (0.299) (0.089) (0.007)

0.25 0.011 0.011 0.011 0.003 0.003 0.003 0.002 0.003 0.001
(0.011) (0.005) (0.001) (0.059) (0.014) (0.002) (0.301) (0.089) (0.006)

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000
(0.006) (0.001) (0.000) (0.058) (0.013) (0.001) (0.302) (0.088) (0.006)

Notes: Mean adjusted R2 values from 5000 Monte Carlo simulations of the UMIDAS equation 7 estimated with
OLS. Daily data generated with AR(1) for alternative years of data, assuming 5, 21, and 63 days in a week, month
and quarter, respectively. The standard deviation of the estimates is reported in parentheses.

For all sample sizes and aggregations, the use of the R2-adjusted shows no evidence of overfitting

for the case where ρ = 0, i.e., there is no predictability. The use of 10 or 500 years of data makes

very little difference for the estimates. The results indicate that the baseline findings closely reflect

the degree of predictability.
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A1.2 Alternative Samplings of Daily MA(q)

Consider the case when the data generating process of the daily data is given by is a moving average

model, MA(q), with common coefficient α and structural innovation ϵt,i:

yt,i = b(L)ϵt,i for i = 0, 1, 2, ..., n. (13)

where b(L) = (1 + αL+ · · ·+ αLq).

Table A2. Predictability of Innovations for Alternative Samplings: Daily MA(q) DGP

Sampling Average End-of-Month
α MA(1) MA(10) MA(20) MA(30) MA(40) MA(1) MA(10) MA(20) MA(30) MA(40)

1.00 0.01 0.13 0.31 0.39 0.44 0.00 0.00 0.00 0.11 0.01
(0.009) (0.028) (0.031) (0.030) (0.030) (0.003) (0.010) (0.013) (0.031) (0.021)

0.995 0.01 0.13 0.31 0.39 0.44 0.00 0.00 0.00 0.11 0.01
(0.009) (0.028) (0.031) (0.030) (0.030) (0.003) (0.010) (0.013) (0.031) (0.021)

0.99 0.01 0.13 0.31 0.39 0.44 0.00 0.00 0.00 0.11 0.01
(0.009) (0.028) (0.031) (0.030) (0.030) (0.003) (0.010) (0.013) (0.031) (0.021)

0.95 0.01 0.13 0.31 0.38 0.44 0.00 0.00 0.00 0.11 0.01
(0.009) (0.028) (0.031) (0.030) (0.030) (0.003) (0.010) (0.013) (0.031) (0.021)

0.90 0.01 0.13 0.31 0.38 0.44 0.00 0.00 0.00 0.10 0.01
(0.009) (0.028) (0.031) (0.030) (0.030) (0.003) (0.010) (0.013) (0.031) (0.022)

0.75 0.01 0.13 0.30 0.37 0.43 0.00 0.00 0.00 0.10 0.02
(0.009) (0.028) (0.031) (0.031) (0.030) (0.003) (0.010) (0.013) (0.030) (0.023)

0.50 0.01 0.12 0.29 0.35 0.41 0.00 0.00 0.00 0.08 0.05
(0.008) (0.028) (0.033) (0.031) (0.030) (0.003) (0.010) (0.013) (0.028) (0.026)

0.25 0.00 0.09 0.24 0.30 0.36 0.00 0.00 0.00 0.07 0.09
(0.006) (0.026) (0.035) (0.033) (0.033) (0.003) (0.010) (0.013) (0.027) (0.030)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.004) (0.010) (0.013) (0.017) (0.019) (0.003) (0.009) (0.013) (0.016) (0.019)

Notes: Mean adjusted R2 values from 5000 Monte Carlo simulations of the UMIDAS equation 7 estimated with
OLS. Daily data generated with MA(q) assuming 21 days in a month. The standard deviation of the estimates is
reported in parentheses.

The central estimates for R2-adjusted for the test of equation 7 when the daily data is generated

with an MA(q) and aggregated to the monthly frequency, n = 21, is reported in Table A2. Like

the AR models, the results show that the structural shocks can be highly predictable when daily

data is averaged. Moreover, while selective sampling can reduce predictability, it can only eliminate

temporal aggregation bias when q ≤ n− 1.
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